Information Processing in Japan . Vol. 5, 1965

The Compiler of ISSP ALGOL

KENZO INOUE*, HIDECHIKA TAKAHASHI* AND KIMIKO SHIMIZU*

1. Introduction

By the ALGOL 60 language [1] one can elegantly describe any algorithm for
numerical analysis, but implementing its effective compiler will be led to some
difficulties. For example, by a computer not possessing the function of stacking
memory, the recursive call of procedures can be implemented only at the waste
of the execution time of object programs.

In implementing a compiler, the production of fast object programs is important
from the practical point of view, so the syntax of the language has usually re-
strictions on some points depending on the scale and the instruction system of a
computer on which the compiler runs. For this reason, ISSP ALGOL prohibits
to use a designational expression and an array identifier as an actual parameter
corresponding to any formal parameter called by value, in addition to the ECMA
subset restrictions.
~ As to the processing of arithmetic or Boolean expressions, we do not respect
them here. It is only mentioned that Bauer’s method [2] was adopted with some
modifications. The following sections partially describe a storage allocation scheme
on block structures and a processing method of parameters of procedures. ISSP
ALGOL compiler was coded in an assembler language but the programs shown in
this paper are described in an ALGOL-like language.

2. The Computer Concerned and the Phase of the Processor
The computer, FACOM 202, on which ISSP ALGOL runs is a medium size one
having the one-address instruction system, the core memory of 8192 words with
the word length of 24 bits, and the addition time of 67 s in the fixed mode.
The processor consists of three blocks of program recorded on a magnetic tape
and works under a master control program existing always in the core memory.
1) compiler (5712 steps) 2) loader (1050 steps)
3) standard procedures and administrators (1134 steps)
During translation it needs further one magnetic tape as working use.

3. Storage Allocation Schemes :
To permit recursive call, all variables and link data have to be stacked into a
stack but their locations relative to the stack top at the entry of the innermost

This paper first appeared in Japanese in Joho Shori (the Journal of the Information Processing
Society of Japan), Vol. 5, No. 1 (1964), pp. 9-20.
* The Institute for Solid State Physics, University of Tokyo.

1

2 K. INOUE, H. TAKAHASHI AND K. SHIMIZU

block including their declarations are decided in the compiling phase. The ad-
dress of the stack top has to be dynamically evaluated and stacked to recover the
information corresponding to an outer call of the same block. These points are
the main part of Dijkstra’s and Watt’s method [5], [6].

To minimize the amount of the storage space for variables, this allocation
scheme is very effective but leading to too slow object programs, in the case of
not being allowed recursive call. If the storage space for variables declared in
any procedure body is reserved as far as the exit of the block in which this pro-
cedure is declared, it is possible to decide the absolute addresses before the run
time of the object program at the expense of the amount of the storage space
(static allocation).

The address of any dynamic array is evaluated at run time, so its allocation has
to be controlled using a run time stack (dynamic allocation). To control dynami-
cally the block structure there is Watt’s method which administrates only at the
entry of block (including procedure). It is very convenient because of the one
point administration, but the number of the innermost block including the activa-
tion of the entered one has to be passed to the latter. And, in the case of a
function designator given as an actual parameter, this block number is not decided
in the compiling phase. Consequently we take a way which divides the controlling
into three parts i.e. at block entries, block exits, and labels. Those are essentially
the same as Naur’s method [4], with the exception of the label administration.
The administration through any label requires as a parameter the number of the
innermost block including the label. Assuming that any recursive call is prohib-
ited and the program is not segmented, this way simplifies the processing in the
compiling phase because the block number is given in advance of the processing.

4. Programs for a Static Allocation (in the Compiling Phase)
Suppose that the following nonlocal variables and arrays have been declared.
integer INDEX, LOCAL MAX, MAX, S INDEX, BLOCK NUMBER, CBR,
CBN; ’
comment CBR stands for the current block reference and CBN stands for the
current block number;
integer array STACK 1, STACK 2 [1: NJ;
Here INDEX is a counter pointing the first free location of the storage space for
variables. The maximum value reached by INDEX is recorded to MAX. The
identifiers are put into the array, STACK 1 and their corresponding informations
i.e. their kinds, types, and the values of INDEX (stand for their addresses) into
STACK 2. S INDEX is a pointer pointing the first free element of STACK 1
and STACK 2. The value of S INDEX at the entry of the current block is kept
in CBR and used to cancel the storage space for variables declared in the block
at the exit. At the entry of any ordinary block it is taken place the following
processing.
procedure COMMON BLOCK ENTRY;

THE COMPILER OF ISSP ALGOL 3

begin STACK 1 [S INDEX]:=CBR; STACK 1 [S INDEX+1]:=CBN;
STACK 2 [S INDEX]:=INDEX;
STACK 2 [S INDEX+1]:=LOCAL MAX;
CBR:=S INDEX; CBN:=BLOCK NUMBER:
S INDEX:=S INDEX +2; BLOCK NUMBER :=BLOCK NUMBER -1
end
The declaration of any variable [is processed as follows.
ALLOCATION OF VARIABLE:
begin STACK 1 [S INDEX]:=AS INTEGER (‘[);
STACK 2 [S INDEX]:=INDEX {with kind and type};
INDEX :=INDEX +1; S INDEX:=S INDEX+1;
if LOCAL MAX<INDEX then LOCAL MAX:=INDEX

end

The allocation of static array becomes slightly complicated because the informa-
tion of the mapping has to be reserved, but it is essentially the same as that of
a simple variable.

If an identifier appears as an actual parameter of any procedure call, its kind
is unknown except the cases that the identifier is already declared or used as a
label in advance of the call in the innermost block including this one. In this
case the identifier is provisionally processed as a label and the final process is left
to the exit of the block.

The processing of a label declaration [: is substantially the same as above but
that the information marking the declaration is put into one bit in the element
of the STACK 2 corresponding to [and the following instructions are generated.

DEF Pj; CALL LABEL ADM (Value of CBN);

Here P; is a symbolic address corresponding to the label J and LABEL ADM is
an administrator for labels.

At the end of any block, the all identifiers declared in the block are cancelled.
With regard to an identifier not declared in the block and processed as a label,
searching the same identifier in the region of the STACK 1 corresponding to the
innermost block enclosing the block being left, if it is not found out it is merely
transferred to the outside block, otherwise there are two cases.

One is the case that the kind of the identifier found outside is also a label and
another is not. In the former case, assuming that the symbolic addresses des-
ignated to the inside and outside label are P and Pj respectively, since P and
Pj must denote the same address, a control instruction to the loader, EQT Pj/Pj,
is generated which serves in the loading phase to replace P; by Pj.

In the latter case, the instruction generated for the inside identifier must be
replaced by a suitable one to the outside identifier, so a control instruction, REP
Pi/OP 1, is generated. In the loading phase this instruction serves to replace, by
the instruction OP [, all instructions whose address parts include Pi.

procedure COMMON BLOCK EXIT;

begin integer E, e, 10, I, i;

4 K. INOUE, H. TAKAHASHI AND K. SHIMIZU

if LOCAL MAX>MAX then MAX:=LOCAL MAX;
[:=S INDEX—1; S INDEX:=I0:=CBR;
CBR:=STACK 1 [S INDEX}; CBN:=STACK 1 [S INDEX+1];
INDEX:=STACK 2 [S INDEX]; E:=S INDEX-1;
for i:=10+2 step 1 wuntil I do
if STACK 2 [i]=UNDEFINED LABEL then
begin for e¢:=CBR+2 step 1 until E do
if STACK 1 [i]=STACK 1 [e] then
begin if STACK 1 [e]=LABEL then
PRODUCE (EQT Pi/Pj) else
PRODUCE (REP Pj/OP I); go to REPEAT
end;
STACK 1 [S INDEX]:=STACK 1 [1i];
STACK 2 [S INDEX]:=STACK 2 [i];
S INDEX :=S INDEX +1;
REPEAT: end
end
For the declaration of any procedure, the storage space for variables declared
in the innermost block including this procedure is not to be overlapped by that
to be used inside this procedure, then the next programs are required.
PROCEDURE ENTRY :
begin COMMON BLOCK ENTRY; LOCAL MAX:=INDEX end;
PROCEDURE EXIT:
begin COMMON BLOCK EXIT; INDEX:=LOCAL MAX;
if LOCAL MAX < STACK 2 [S INDEX+1] then
LOCAL MAX:=STACK 2 [S INDEX+1]
end

5. A Dynamic Storage Allocation Scheme

If the recursive call of procedures is not allowed, dynamic arrays are only con-
cerned in the dynamic storage allocation. Opposing to the static case, the process-
ing of procedure exits is not different from that of ordinary blocks in this case.
Consequently hereafter blocks stand for ordinary blocks and procedures.

Assume the next declarations in run time of any object program.

array D STACK [1:Nj;

integer D INDEX, CBR, CBN; ,
Dynamic arrays are allocated into D STACK. The administrators BLOCK ENTRY
and BLOCK EXIT to be executed at the eniry and exit of blocks are described
below.

procedure BLOCK ENTRY (BN); value BN; integer BN;

comment BN is block number;

begin D INDEX:=D INDEX+2; D STACK [D INDEX—2]:=CBR;

CBR:=D INDEX—2; D STACK [D INDEX—1]:=CBN; CBN:=BN

THE COMPILER OF ISSP ALGOL 5

end;
procedure BLOCK EXIT ;
begin D INDEX:=CBR; CBR:=D STACK [D INDEX];
CBN:=D STACK [D INDEX4-1]
end
The administrator for labels is as follows.
procedure LABEL. ADM(BN); value BN; integer BN;
begin integer I; for [:=CBN while I + BN do BLOCK EXIT
end

6. Parameters of Procedures

Only the processing for parameters called by name is described. Any proce-
dure declaration is translated into a program segment of the form shown in the
following.

P: BLOCK ENTRY (»'); PARAMETER TRANSFER (»);

PLANT RETURN INTO £ OF END; go to BEGIN;

L1: formal location 1;; Lun: formal location #;

BEGIN: body of procedure P; BLOCK EXIT; END: go to #;

Each formal parameter respectively corresponds to each formal location into
which an instruction corresponding to an actual parameter is transferred by the
administrator, PARAMETER TRANSFER, when this procedure has been called.
Procedure PLANT RETURN INTO # OF END serves to plant the return address
for the procedure call to the go to statement labelled with END.

With regard to any actual parameter, an instruction corresponding to the param-
eter is generated as a program parameter following the procedure call instruc-
tion. If an actual parameter is an expression other than a variable or a label, a
program segment to evaluate the expression 18 generated as a subroutine and its
call instruction is used as the program parameter.

The instructions for possible actual parameters are shown in the Table 1.

Table 1

Actual parameter and its corresponding program parameter.

Actual Parameter Program Parameter
Simple variable, X LOAD X
Array indentifier or string, A SET A into B-REG
Procedure or switch identifier, P CALL P
Label, L GO TO L
Formal parameter, Li EXT L:
Other expression, PE CALL PE

When a formal parameter appears in the procedure body, the instruction

EXT Li is generated which executes an instruction in the corresponding formal

location ;.

6 K. INOUE, H. TAKAHASHI AND K. SHIMIZU

Let’s consider a case that there is a formal paramater in a left part of an as-
signment statment, L:=F. In this case, it does not require the value but the
address of the corresponding actual parameter.

We resolved this case by using an administrator which fetches the address of
the actual parameter from the corresponding instruction. The form of the object
program segment in this case is as follows.

EXT L; ADDR ADM (FPj); PLANT ADDR into % of Pi; E; Pi: STA §;

If the actual parameter is a subscripted variable the instruction EXT L causes to
call the corresponding subroutine which evaluates its address and value.

This method is not too inefficient to treat formal parameters comparing ordinary
variables with the exception of left part variables.

7. Some Remarks for the Recursive Call

A speculation which extends monotonously the preceding method is described to
simplify the block reference in the case including the recursive call.

Assume instruction form, OP A/B, to a machine on which object programs
run, where OP represents the operation part of instructions, A and B are both
the address part giving the actual address of an operand A+ B.

Assuming that the relative location of any variable is designated to B, and the
address of the block reference is designated to A in the indirect mode, any oper-
and can be referred by A+ B.

Watt has proposed the way that, considering the exit by go to statement, when
the block having the static level number j is called within the block having ¢
(7<), all the informations of block references from j to { are stacked.

Because the address of A is peculiar to each block, it is in place of the block
number and its content gives the block reference of the corresponding block. So,
providing A is an array whose subscript ¢ is a block number, the administration
at the entry and exit of the block is very much easily executed as follows.

procedure BLOCK ENTRY (¢); value ¢; integer «;

begin INDEX :=INDEX +2; STACK [INDEX—2]: =CURRENT 4

STACK [INDEX-—1]: =A[a]l; CURRENT A: =¢a; Ala]: =INDEX—2
end;

procedure BLOCK EXIT;

begin INDEX: =A [CURRENT A}; A[CURRENT A]: =STACK[INDEX+1];

CURRENT 4 : =STACK [INDEX]

end

INDEX and STACK have the different meaning from those of the preceding
sections.

In the case of leaving a block by any go to statement, it has to be controlled
through the go to statement but not the declaration of the corresponding label.
If the destination of the go to statement is a formal parameter, it needs as the
actual parameter not only the address of the label but the content of A[aq] of
the block in which a corresponding actual parameter is declared.

[1
[2
[3

[4

]
]
]
1

e b

THE COMPILER OF ISSP ALGOL 7

References

Naugr, P. (Ed.), Revised Report on the Algorithmic Language ALGOL 60. Communications of
the Association for Computing Machinery, 6, 1 (1963), 1-17.

Samerson, K. anp F. L. BAUER, Sequential Formula Translation. Communications of the As-
sociation for Computing Machinery, 3, 2 (1960), 76-83.

JEnseN, J., P. Monprup anp P. Naur, A Storage Allocation Scheme for ALGOL 60. Commu-
nications of the Association for Computing Machinery, 4, 10 (1961), 441-445.

JenseN, J. anp P. Naur, An Implementation of ALGOL 60 Procedures. Novdisk Tidskrift
for Informationsbehandling 1, 1 (1961), 38-47.

Dukstra, E. W., Recursive Programming. Numerische Mathematik 2, (1960), 312-318.

Watt, J. M., The Realization of ALGOL Procedures and Designational Expressions. Com-
puter Journal 5, 4 (1963), 332-337.

