" Information Processing in Japan Vol. 6, 1966

Recursive Procedure Analysis
AKIHIRO NOZAKI*

1. Introduction

In a previous paper [1], the author proposed a new method (the predecessor method)
of storage allocation for local dynamic variables in Algol programs. The discussions
in that paper was, however, mainly limited to the treatment of the variables
declared in a main program.

In this paper, we consider a treatment of the local variables declared in procedure
bodies which involves, if we allow recursive callings of procedures, highly complex
problems. As a resuit, the go-to-administration proposed by J. Jensen et al [2] is
shown to be a complete but too tedious solution to be simplified to a considerable
extent.

Now suppose that we can use correct addresses of storage registers allocated to
current variables. Then we can utilize the predecessor method to decide the cor-
responding address of a new variable which is now going to be declared (cf. [1]).

The absolute address of an element of a dynamic array is by the way computed
with the values of suffices and a number of coeflicients. We assume that the set
of these coefficients is stored in a control word, i.e. a static variable. Then the
correct addresses of dynamic variables can be known from the correct addresses of
static variables. Therefore we shall consider only the question how to know the
corresponding address of a current local-static variable declared in a procedure body.
Remark When a procedure A is called recursively, some variables declared in
A will again be declared. Then each of these variables has two (or possibly
more) memory locations. So the computer has to select in the executing phase
the proper address among the addresses of these memory locations according to
cases.

Hereafter we shall call the local static variable declared in a procedure body a

semi-static variable.

2. Preliminaries

For rapid access to semi-static variables, it is preferable to utilize index registers.
The points of the technique will be illustrated as following:
1) Semi-static variables are allocated in a storage area reserved for local dynamic
variables. In this connection, “semi-static” implies “dynamic”.
2) To each semi-static variable we associate a corresponding address in the same

This paper first appeared in Japanese in Joho Shori (the Journal of the Information Processing
Society of Japan), Vol. 6, No. 1 (1965), pp. 12-20.
* College of General Education, University of Tokyo.

8

RECURSIVE PROCEDURE ANALYSIS 9

way as to an ordinary local static variable (cf. [1], Section 2). This address is,
however, considered as a relative address to a base which is determined in the
execution phase.

3) Every instruction referring a semi-static variable contains the relative address
corresponding to the variable in its address part and is modified by an index register
containing a relevant base.

4) At every entrance to a procedure A by a procedure statement, the current
value L of the first address of the usable storage cells for local dynamic variables
is assigned to a relevant index register. Note that the current value L can be
known by the control word Ls being attached to the block B which contains the
procedure statement calling A at the moment (cf. [1], Section 3).

For the correct use of addresses, the values of index registers must be kept
properly. This is the principal point of our problem.

Let us consider an arbitrary fixed program P written in Algol. We call the
main program of P a procedure of degree 0. A procedure of degree n is
defined to be a sub-procedure declared in the procedure body of a degree n—1.

We denote the degree of a procedure A by d(A).

We shall call a variable declared in a procedure of degree n a variable of
degree n.

In the following we shall assume that many index registers are available and

that for each 72>0, a separate index register M[#] is utilized for modifying semi-
static variables of degree .
Remark An instruction referring a semi-static variable of degree 7 is always
modified by the register M[n], even if it appears in a procedure of a degree not
equal to 7. When a semi-static variable is used as an actual parameter called by
name, the software should evaluate the absolute address of the variable taking
account of the relevant index register. This absolute address is used as an actual
entity of the parameter.

3. A Simple Case

Let us start with a discussion about a simple case under the following restriction
on the program P.

Restriction (*) Any procedure identifier, designational expression and label do
not be used as actual parameters of procedure statements or functions.

This restriction (*) eliminates the possibility of the control transfer to a location
labeled by an identifier from the outside of its scope. So we can utilize an
algorithm of index register administration proposed by J. M. Watt [3].

The principle of his algorithm would be summarized as follows.

Consider a procedure call from a procedures P of degree # to a procedure Q

of degree 7.
(1) If m is not smaller than 7, then the values of index registers
Minl,.......... » Mlm]

are reserved in a working storage before the execution of Q.

10 A, NOZAKI

(2) On the normal exit from @ to P, these values are all restored to
Mnl.......... , M[m), if and only if m=n.

No other operation is executed even on an abnormal exit.

In the following we shall examine rigorously the validity of the algorithm.

A program P written in Algol can be considered as a finite string, or rather a
finite ordered set of basic symbols taking the same symbols (strings) in different
positions as different elements (subsets, respectively). Any procedures in P are
naturally regarded as subsets of P.

Let A be procedure of a degree not equal to zero. Then A is a subprocedure
declared in procedure B of degree #—1. We denote the procedure B by p(A).
(p(P) is not defined.)

Let us denote an entry from a procedure A to a procedure B with A+ B, a
normal link from B to A with B—A and an abnormal exit by a go to statement
from B to C with B~(C. Then we can represent a sequence of control transfers
by a diagram e.g.

P+A+A+B~A. 3.1)

We call such a diagram representing a sequence of control transfers as (3.1) ¢

control sequence.
Under the restriction (*), every control sequence of the form

Aot A+ +A-dA (3.2)

satisfies the following axioms.
Axiom 1. If 4=+, then A#P and A.Cp(A).
In general, Ai-1Cp(A:) for {>0.
Note that p(A) is just the scope of the procedure identifier of the procedure A.
Axiom 2. If 4=—, then #>0 and A=A.-1.
Axiom 3. If 4=~ , then A.CA.

Theorem 1. Suppose that A, in the sequence (3.2) equals to P and d=~.
Then there is an integer ¢ such that A:=A.

Theorem 2. Suppose that, in the sequence (3.2), d=~, Ai=A and A;+ A for
all j>4. Then

d(A)<d(Aj)

for all j>i.

Remark The exit ~ in this case is interpreted as an exit to A:. After the exit
~ in (3.1), consequently, the value of index register J/[1] must be the the same
with its value at the moment when the control was advanced to the procedure A
for the second time:

P+A+A. (3.3)

(3.1) is equivalent to (3.3) in the sense that the value of the related index
register {[1] is the same.

RECURSIVE PROCEDURE ANALYSIS 11

Let us denote by M|n, t] the value of M[n] at the moment when the control
was transferred to A-.
Theorem 3. Consider a control sequence of the form

P+Ai+...... + Aw-1dAn. (3.4)
If d=r~v, Ai=An and A;# A, for i<j<n, then
MIl, il=MIl,],
' (3,5)

Mk, il=Mlk, n] |

where k=d(A-).
If 4=—, then the equations (3.5) hold for {=n—2.
The proof is obvious by theorem 2 and the operations (1)-(2).
This theorem shows the validity of the algorithm.

4. General Case
4.1. Formal parameters in go to statements
Consider again a control sequence of the form

P+A+A+B~A. 4. 1)

If the exit ~ is caused by a go to statement designated explicitly by a label,
then (4.1) is equivalent to the sequence

P+A+A (4.2)

(cf. Section 3, Remark). But if the go to statement is designated by a formal
parameter X of B, and if the actual parameter for X is again a formal parameter
Y of A to which a label ¢ in A has been assigned as an actual parameter, then
the control should be transferred back to the first A. So the sequence

P+A (4. 3)

instead of (4.2) should be equivalent to (4. 1).
In this connection, some additional operations are required if we remove the

restriction (*).

A(-) A(q) B(Y) go to X
pP —m> A ——>» A ——3 B —>

W v W
(@ ~—m—> Y —> X)

Fig. 1.

12 A. NOZAKI

Let
P+A+...... + A~ A (4. 4)

be a control sequence. We call the suffix 7 of each term A; the dynamic level of
the procedure A; in (4.4), after Watt. We assume that every procedure A has a
semi-static variable 7(A) containing a dynamic level of 4. On every entrance to
the procedure A:, the value of L(A:) is set to be L(Ai-1)+1.

Suppose that the procedure statement in A which called the procedure A+
contains a label X (or a designational expression «) as an actual parameter for a
formal parameter Y. Then the dynamic level % of A: should have been trans-
mitted to the procedure A+ together with the label X (or the necessary informa-
tion to evalute a). If Y is again used as an actual parameter in a procedure
statement calling As+2, then the pair of the label X and the dynamic lebel % should
be transmitted to Ar+2 as an actual entity of Y.

Whenever the control is advanced to a go to statement designated by a formal
parameter (or a designational expression whose current value is a formal parameter),
both the exact address of a label ¢ and the dynamic level % of the actual parameter
are evaluated. The control is first “turned back ” to a procedure of dynamic level
k and then is transferred to the location g.

In the first step of these transfers, the following turning-back-operation is required

to keep the proper values of index registers.
(1) Let n be the dynamic level of the procedure containing the go to statement
(see (4.4)). Then the operation (2) in Section 3 is applied repetitively, % —k times,
to recover the values of index registers at the moment when the control was
transferred to the procedure of dynamic level %.

No additional operation is required for the second step.

Roughly speaking, the sequence (4.4) is first reduced to

P+Ai+...... + A~ A (4.5)

where ~ is interpreted as a control transfer specified by an explicit go to a
statement “go fo ¢”. Note that Axiom 3 holds for the sequence (4.5).

4.2. Formal parameters as proceduve statements orv functions

The dynamic level % of a procedure A should also be utilized when a procedure
identifier B (or an identifier of a function designator) is used as an actual parameter
in a procedure statement in A.. We shall assume that the dynamic level % is
also transmitted to the new procedure together with the necessary information to
call B. If the procedure B is delivered to the procedure A. through formal
parameters and is used as a procedure statement or a function in A,, then the
following operations are executed before the execution of B.
(2) The values of index registers

MI1], Mi2],...... » M1 (j=d(Aw)

are reserved in a working storage.

RECURSIVE PROCEDURE ANALYSIS 13

(3) The values of index registers are so changed as if the control were turned
back to the procedure A (of (1)).
(4) On the normal exit from B, the reserved values are restored to M[1], M|[2],
...... » MIjl
Note that the dynamic level of the procedure B in this case is defined to be 7 1.
Variables in B are allocated to the area next to the area for the variables in A4,.
If an abnormal exit out of B occurs, then the same principle is applied to the
index-register-administration as what is described in Section 4.1. In any case the
procedures As+1,. , An are all canceled together with B.

5. Precise Algorithm ,

Now we shall describe precisely some system procedures to show the feasibility
of the operations (1)-(2) in Section 3 and (1)-(4) in Section 4.

In the following Memory [/] denotes a memory cell having address i.
procedure Entry (L, m, n);
value L, m, n;
comment This system procedure is called before every control transfer from a
procedure A of degree s to a procedure B of degree n. The compiler inserts
automatically a statement calling this system procedure in front of every procedure
statement written by a programmer. [is the first address of usable storage cells

OCCUPIED

System YIS
variables
attached (m—n-1)
to the
0 the YA
procedure o

L (B)

M(n] —

14 A. NOZAKI

which can be known by a control word being attached to a block containing the
procedure statment (cf. [1]). '

We assume that the semi-static variable L(A) is allocated to the register
Memory [M[n]—1] and that the control word L. containing the first address of
usable storage cells is allocated to Memory [M [n]].;
begin integer i;

if m<n then go to procedure initialization ;
for ;:=0 step 1 until »—»n do Memory [L+i]:=M[m—i]:
L:=L+(m—n+1);
procedure initialization: 7:=if 7=0 then 1 else Memory [M [m]—1]+1;
Min):=L+2;
Memory [M[n]—2]:=m—n;
Memory [M([n]—1]:=1¢;
Memory [M[n]]:=M[n]+1 end
procedure Exit (n);
value #;
comment This system procedue is called on every normal exit from a procedure
B of degree n to any procedure A. The compiler inserts automatically a statement
calling this system procedure at the end of every procedure body, just before the
instructions for the linkage.;
begin integer i;
if Memory [M[#n]—2]<0 then go to end;
for i :=Memory [M[n]—2] step —1 until 0 do M[n+i]}:=Memory [M[n]
—i—2];
end: end

Note that this procedure does mnot contain instructions to transfer the control
from B to A.

The operations (1) and (2) in Section 3 are efficiently executed by these procedures.
The operation (1) in Section 4 is easily executed by a formal-parameter-administration
routine which contains the following statement.

begin integer ;; for ;/:=xn step —1 until 2 do Exit(;) end
The operations (2) and (3) are properly executed by inserting the following statements
automatically in front of a formal parameter X used as a procedure statement.
Entry (L, 7, 1);
begin integer ;; for ;:=# step —1 until 2 do Exit(;) end

Note that the relative address of L and the degree j are uniquely determined in
the compiling phase by the position of the statement specified by X. The value
of % depends on the actual parameter for X. So the above statements may be
preceded by some instructions for transmitting the relevant dynamic level from X
to k.

The operation (4) in Section 4 is automatically executed as a special case of the
operation (2) in Section 3.

RECURSIVE PROCEDURE ANALYSIS 15

References

[1] Nozaki, A., Problems of Storage Allocation. Information Processing in Japan, 3 (1963), 44-47,
Information Processing Society of Japan.

[2] Jensen, J. et al, A Storage Allocation Scheme for Algol 60. Communications of the Associ-
ation for Computing Machinery, 4, 10 (1961), 441-445.

[3] Warr, J.M,, The Realization of ALGOL Procedures and Designational Expressions. Computer
Journal, 5, 4 (1963).

