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On the Separation of All Roots of a Polynomial
by Determining the Number of Roots
in the Unit Circle

TaTsuo Torm* AND TosHIHIKO YOSHIORKA®*

1. Introduction

In various iterative methods for solving a polynomial equation there have been
required, for any equation, both the convergence and the reduction of the comput-
ing time. But none of them satisfies these requirements?.

Recently with the development of digital computers, it has been taken considera-
tion on the global convergence in a iterative process. Lehmer’s method is remarkable
one such that it reduces the difficulty of the convergence by contracting some
region of complex plane where roots exist®.

In this paper we find all the roots of a polynomial f(z) without decreasing its
degree by making clear two points:

(1) The number of roots of f(z) in the unit circle I.
(2) All the arguments of roots on I, if f(z) has at least one root on I,

2. Number of Roots in the Unit Circle
We begin to describe some definitions and lemmas without proofs which you may
find in our Japanese paper.
We denote nth degree polynomial with complex coefficients by
f@)=az"+aiz" '+... 4 an_1i2+an (1)
for which we define a conjugate polynomial such that
{f@}Y=r*()
=2+ An_ 2V . 12+ (2)
=z"f(1/z).
Besides, if each root of f(z) is equal to that of f*(z), we call f(z)=0 the reciprocal
equation.
Lemma 1. Let P(z) and @(z) be two polynomials such that
[P(a)|<IQ(=)|  for  [z]=1.
Then, Q(z) and P(z)+@Q(z) have the same number of roots in the unit circle
(Rouché’s theorem).
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Lemma 2. Eliminating the highest power of #nth degree polynomial f{z) by
2@)=/(0)f(&)—*0) f*(2),
we get the followings:

(1) If g(0)=0, the highest common factor of f(z) and f*(2) is equal to that of g(z)
and g*(z). Hereafter we will neglect its constant common factor.

(2) The highest common factor f(z) and f*(2) is contained in that of g(z) and
g*(z) for any value of g(0).

(3) If g(0)>0, f(z) and g(z) have the same number of roots in the unit circle /I".
If g(0)<0, f*(z) and g(z) have the same number of roots in that region®.

(4) If g0)=0 and if the roots of g(z) do not exist on I', then all g(z), f(2) and
F*(z) have the same number of roots in I". Moreover, if g{z)=0 identically, f(2)
and f"*(z) have the same number of roots in I', where f’*(z)z{%f(z)}*.

Following Lehmer’s algorithm, we construct a polynomial sequence

Fi(2)=70)fo(2)—1o*0)fo*()

Frr1(®=fri1=/(0) ful)—Fn*(0) fu*(2)

from the given nth degree polynomial fo(2)=f(2).

He stated a necessary and sufficient condition that polynomial f(z) has at least
one root in I', using the sequence

f)=(2), f1i(2), ... s Ju(2)y Jrr1(2)=frra (3)

from which, however, we can find the number of roots in I.

Let m: be the degree of fi(z). Then

R=M> > e >np> Nn=0. (4)

Theorem 1. In order that fi(z) and fi*(z) (B=0,1,...... ,h) are prime to each other,

it is necessary and sufficient that
Jra10.

Besides, if £,(0)/2(0)...... £(0)%0 and if fo,;=0, then the highest common factor of
f(2) and f*(2) is fu(2).

Proof. Sufficiency. From a relation

Jrs1=/(0) fu(2)—/*(0) fu(2)

it is obvious that fu(z) and fa*(z) are coprime if fo;1350. Next, when fu(z) and
f*(z) are coprime, we can find, from lemma 2, (2), the same relation between
f;,,_l(z)'and Jr_y*(z) for any value of f»(0). Similarly, we can know fi(z) and fi*(z)
are coprime.

Necessity. If fy(z) and fy*(z) are coprime and if £,(0)%0, then fi(z) and fi*(2)
have evidently no common factor, applying lemma 2, (1) to the relation

* Q=00 fi2)—F o5 (0) fo*(2).
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Similarly, fi(z) and fi*(z) (#=2,3, ...... , h) are coprime, if f5(0)f3(0)....../x(0)=0.

Therefore, by the definition of fu.1, it must be non zero constant.

Now, we will prove the later half of this theorem. Applying repeatedly
lemma 2, (1) to fi(2) and fi*(z) (k=1,2, ...... , #) under the given condition f1(0)/2(0)
...... (00, we find that all fi(z) and fi*(z) have the same highest common factor.
Since fr.1=0, fu(2) is equal to f»*(z), identically, if we neglect their constant
common factors. This completes the proof.

Theorem 2. Let 7 be the degree of fi(z) and m be the number of roots of
fil2) in |z|<1.

If fr+1%0 in the sequence (3), then we get a recurrence formula

1e=1(—fur1(0)) 7+ 587 fe41(0)) 11

/lh+1=O, k:h, h‘—l, ...... N 1, 0
where 1(x) is unit function and sgn(x) is sign function.
Proof. From theorem 1 fi(2) and fi*(z) (#=0,1, ...... , k) are prime to each other

when f2.1%0. So that, fi(z) has no root on the unit circle I'.
Supposing f¢,+1(0)=0 in a relation
Sen1(@)=/il0) file)—f*(0) fi*(2)
we get
Uie1= Mz, fea1(0)>0
U1 = Ve iy Jr41(0)<0
from lemma 2, (3).
If 4,1(0)=0, then
M1 = = Wie— Ui
from lemma 2, (4).
We can rewrite the above three relations into one formula
2= 1(—Fes1(0)) 12+ 580 fie41(0)) 1.
When k=h+1, it is evident gr.1=0 for fr.i=0.
Theorem 3. If £1(0)f2lo)....../»(0)x0 and if f»,1=0, then
pk:1(——ﬁc+1(0))(%/c‘—7’lh+2#h)+5gn(ﬁ6+1(o))ﬂk+]
k=h, h—1, ...... , 1, 0.
Besides, f.(2) and f./*(z) have the same number of roots inside the unit circle.
Theorem 4. A necessary and sufficient condition that a polynomial p(z) has
all the roots on the unit circle I” is that p(z)=0 is a reciprocal equation and that
$'(z) has no root outside I'. When p’(z) has all the roots inside I', roots of p(z)

are all distinct.

3. Avrgument of the Root
We consider only about the roots of f(z) on the unit circle I', because the roots

of f(z) on the circumference of radius » can be transformed on I' by replacing
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f(2) with f(#2). Futhermore, the roots of f(z) on I" are those of p(z) which is
the highest common factor of f(z) and f*(z). So, we may consider only about
the roots of p(2) on I'. From theorem 1, the common factor p(z) is determined by
pR) =/n(2)
when f1(0)/2(0)...... 7(0) %0 and f»,1=0. Moreover, p(z)=0 is a reciprocal equation.
Lemma 3. If a polynomial p(z) always satisfies a relation
P*(R)=cp(2)
¢; complex number independent of z
we get the followings:
(1) p(2)=0 is a reciprocal equation and |[c|=1.
(2) By writing
j)o(z)zc%’"p(z), Ogargc%’gn
we have
Po*(2)=po(2).
Now, let us call po(z)=0 a normalized reciprocal equation, and rewrite
po(2) =apz™+az™ 1+ ... +am, aox0 (5)
m

Lemma 4. If we take a suitable polynomial %(z) whose degree is % (mzkz[TD,

then we can write po(z) using 2(z) such as
Do(2)=2""*h(z)+h*(2).
Especially, denoting the minimum value of & by [/ <:|jﬁq> , h(z) can be written

2
) @t a1+ ‘a1zt a, m=2[+1 (6a)
2)=
{aozl+alz“‘+ ...... +az~12+%az, m=2] (60)

where [x] is a largest integer not greater than x.
Theorem 5. If we denote mth degree normalized reciprocal equation by
po(2)=apz™+a1zm ... +an=0
then we get the followings:
(1) Let m be the odd number. Then, py(z) has at least one root on unit
circle I'.
(2) Let m be even number, i, e,. m=2l. Define a /th degree polynomial 4(z)
by
hz)=apzl + a1zt 14 ... +al_1z-{—%m
Then, all the roots of pe(z) on I” agree with those of a equation
Re{n(2)} =0, |z|=1.
Here Re{z} is real part of z.
We prove only the later half of the theorem. If m is even, we can write
Do(2)=2"1(z)+h*(2)
by the lemma 4.
Since h*(z)=2'4(z) on |z|=1, it follows that
po(2)=2"{h(2)+h(2)} =22'Re{ h(2)}.
Therefore, po(z) and Re{A(z)} have the common roots on |z|=1.
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4. Computational Method

First, we determine the modulus of roots. This algorithm is based on theorem
1 and theorem 2.

Let us construct the sequence (3) from given polynomial f(z). If fi,1%0, the
number g of roots of f(z) in the unit circle I' is easily obtained by theorem 2,
Taking an arbitrary positive number », we can find u(») which is the number of
roots of f(z) in a circle of radius » by transforming f(z) to f(rz).

Given only wu(r), we can determine the modulus of roots with a preassigned
accuracy by the bisection method which may be simplest.

Secondarily, we assume that f(z) has at least one root on I". The highest common
factor of f(z) and f*(z) is given by fi(z) from theorem 1. Futhermore, f.(2)=0
is a reciprocal equation.

Let fu(2) normalize to po(z) and m be its degree. When m=1, we can easily
solve po(z)=0. If m>1 is odd number, we change py(z) to even degree polynomial
by multiplying (2+1) to po(2). So, we may concern with only even degree reciprocal
equation py(z)=0. To solve it on I, we may determine the roots of equation

Re{n(2)} =0, |z]|=1

from theorem 5. Here, we note the degree of A(z) is lz»%i .

Let us consider the polynomial with complex coefficients
h(2)=(cr+i)zt + (a1 +ifi_)2 ... -+(ao+12f0)
where a’'; and f’s are real numbers.
If we transform z=¢* in Re{i(2)}, then we get /th degree trigonometric
polynomial

Re{h(ci%)} :kgloak cos ko—kzﬁ1 Besin k0 (7)

Hence, we may determine the real roots of this equation. But we omit the
algorithm.

In table 1 we show numerical examples which are computed by floating point
number with 15 digits mantissa.

Table 1.

Example 1. f(z)=2z%+(0.125+0.257) 2°+ 27z*—(0.5—8.250)z% — (2 —i)z* — 16z —2—4i=0.
No. Roots Numerical solutions

1 2i 0.00000 00000 0000 +1.99999 99999 9982:
2 Y . 1.73205 08075 6872 —0.99999 99999 99906:
3 3 ! —1.73205 08075 6872 —0.99999 99999 99949;
4 1 =i 0.99999 99999 99943  —0.99999 99999 99943;
5 =L —0.99999 99999 99943  +0.99999 99999 99943;
6 —0.1256 —0.25¢ . —0.12499 99999 99997  —0.25000 00000 00023z
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Example 2. f(z)=2%+(0.240.12)z8+10iz"— (1 — 24)26 — 3525 — (74 3.51)z4 — 50iz®
+(5—104)z2+ 24z + 4.8+ 2.4i =0.

No. ! Roots ; Numerical solutions
1 £ )T T2 1.41421 35623 7402  —1.41421 35623 7402i
2 —1.41421 35623 7402  +1.41421 35623 7402
3 WA - \/?i 1.22474 48713 9170  —1.22474 48713 9170i
4 V2 2 —1.22474 48713 9170  +1.22474 48713 9170i
5 1 T 1.00000 00000 0038  —1.00000 00000 0038;
6 - —1.00000 00000 0038  --1.00000 00000 0038;
7 D N 0.70710 67811 86535 —0.70710 67811 86535;
8 T2 N2 —0.70710 67811 86535  -+0.70710 67811 86535;
9 —0.2 —0.1i —0.20000 00000 00077 —0.09999 99999 99988;
Acknowledgement. The authors wish to thank Prof. K. Joh for the valuable
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