Information Processing in Japan Vol. 7, 1967

Compiler Generating System

Kucnr Fujno*

1. Introduction

Generally, we have written the implementation of a compiler system (CS) by the
machine language (including assembler language) of a specified digital computer.
In this case the generated CS is sufficiently optimal because we can fully use the
speciality of machine instructions. However it requires a great deal of effort and
considerable time (5-10 man years). Therefore, it has been desired to develop a
method sufficiently simple and requiring a shorter interval to make a CS with higher
capabilities. The program which realizes this idea is called the Compiler Generat-
ing System (CGS). This paper presents a basic investigation and a method of
realization.

The author is grateful for Professor H. Noguchi of WASEDA University for his
useful advice and to Professor M. Namba who has given so much machine-time to
the author and to S. Katagai who assisted in the implementation.

2. Notaion of the Compiler System

To make clear the nature of the compiler system, the following notations are
used.
2. 1. Notation of CS. Let L(1) be one of the automatic programming language
(APL) where ie/={1,2,....,n}. For example, L(i)s are ALGOL, FORTRAN and
NUMERIC (c.f. [1], [2]). Let M (i) be a computer and L(i) be its machine lan-
guage, where ieJ={1,2,....,m}. A CS is denoted as CS(x,v,2) ; where the descrip-
tive language (DL) of the source program given to CS is L(x), the DL of the
implementation of CS is It(y), and the DL of the object program is L(z). In an
ordinary compiler, since y=z, thus CS{x,y,2) =CS(x,y,»). It is thus written as
CS(x,y).
2. 2. Function of CS. The input language L(:) of CS(i,j,k) has some effect from
the machine M(j) in its representation, so it is denoted as L(4,7). Let P(i,j) be
a program written on L(1,7), then CS(i,j,k) translates P(i,j) to the object program
P(i,k). If the function of CS(i,j,k) is written as f(i,j,k), the relation

This paper first appeared in Japanese in Joho Shori (the Journal of the Information Pro-
cessing Society of Japan), Vol. 7, No. 5 (1966), pp. 245-255.
* Waseda University Electronic Computation Center.

24

COMPILAR GENERATING SYSTEM 25

f(j, k) Poj) = PG,k € P(k)
(P(irj)—|_CSGyj,B)_|—P(i,k))
holds, where P(.k) is the set of programs written in L(k).

Now let P(i,j) and P(i,j) be programs for a problem P. If we write P(i,j)=
P(i’,j) to show they are equivalent in mathematical meaning, there should be a
a translation ¢(4,7,7) from P(i,7) to P(7,j) because the program structures are
different in general. Therefore the next relations hold,

f(ighi) P(i,j) =P(i.j) €P(.4)
and P(i,))=P(@,j) should be true. Let o(i,i/,j) denote the transformation from
P(i,j) to P(i'.5),

6 (i,i',3) fG4.0) PGrj)=0(ij) Pli.j)=P@.j)
holds and hence the relation

a(4,1',7) fG5.0) =F@7.0)e@,1)-
is obtained. This relation is the basic assumption for generation of a programming
system for each machine.

2. 3. Self Expressible CS. Suppose a CS(i,j,j) exists, and let P(CS(i,5,5)/L(,5))
denote the implementation of CS(i,7,7), itself written with its input language L(i,7).
When this program is given to CS(i,j,7) as a source program and if the object
program CS*(i,j, $=P(CSG,7,7)/L(i,j)) on L(j) is the implementation having an identical
function with CS(,j,7), then CS(,j,7) is said to be self expressible. The usual com-
piler does not always have this property, but if we neglect the speciality of M(y)
and the limit of the memory, we may consider each compiler to be (in wide sense)
self-expressible.

One of the sufficient conditions for CS(,j,j) to be self-expressible is that L(i,5)
contains L(j) as a subset. This property is important to analyze CGS.

3. Compiler Generating System (CGS)
3. 1. Notation of CGS. Let CGS(x,y,z; U,j) be a representation of CGS, where the
input language of CGS is L(U), the implementation language of CGS is L(j), and
x,y,z represent that CGS generates a compiler CS(x,3,2).
The input data of CGS are:
(i) The general representation of CS(x,y,z) written with Z(U).
(ii) The set 6(A,B,C) of necessary information,
The output data of CGS are:
(i) CS(A,B,C) written with L(B)
(ii) The number of words contained in the implementation of CS(A4,B,C) and other

26 K. FUJINO
information.

Generally L(U) and M(j) are fixed for a CGS so that it may be written as CGS
(*,%,2). On the other hand, CS(x,v,2)eP(.y), CGS(x,y,z; U,7) can be considered as a
compiler CS(U,j,y). Therefore not only CGS has the same function as CS, but also
CGS needs to be able to change the part associated with the output language Z(v).
In addition, the information defined by x,7,z has to be given as not constant but
variable in the source program written with L(U). Therefore, it is necessary for
us to make clear structure of CS(#,y,2) in the problem to realize a CGS(x,y,2).

4. Constitution of Compiler

4. 1. Constituent Elements of Automatic Language (APL). There are three kinds
of constituents for APL L(x). Carrier representing data for the program, Sub-
routine which has its own name, and is a procedure representing a mapping from
a to B, where @ and Bc C. Programming word which is necessary to write a
program other than the two elements above. These sets are denoted by C, Z, and
W respectively.

4. 2. Structual property of L(x,y). The set of operators (arithmetic and logical)
belonging to L(x,y) and the instruction codes of L(y) contained in L(x,y), is called
set of rank-0 subroutines of L(x,y), and denoted by Z°. Z° is called rank-0 Library
written as LB(0), which is naturally unique to each L(x,y). A program written on
LB(0) is called rank-1-program and when it is registered to Library it is called a
rank-1-subroutine whose set is denoted by Z!. Standard subroutines sin, cos and
v (square-root) etc. belong to Z! in ALGOL and FORTRAN. A program written

7-1
by using subroutines of LB(r—1) represented as U Z¢ is called a rank-r-program.
k=0

If it contains the subroutines of Z7, it is said to be proper, and when registered it
is called a rank-r-subroutine and its set is written as Z7. For example, a program
solving a quadratic equation is rank-2, since it uses the subroutine —=ZL.

Each program element (i.e. statement) is represented as e=(z,c,w) in the structural
meaning, zC LB(r-1), ccC and wcW.
Examples:
In DC (declare) element, no subroutine is contained, thus it can be written as =
(¢,c,w). Ex. array A, B (100, 20) etc..Here ¢ represents an empty set.
In OP (operation) element, zcLB(l). Ex. A+B—C; sin (X+Y)+SQRT(X**2+
Y**2)T; Here<*,**> CZ° <sin, sqrt (=4)> cZ.,
In MI (machine instruction) element, zc LB(0) and z are machine codes. Ex. ADD
(X);<ADD> e 20,
In SB (subroutine calling) element, zcZk (1<k<yr—1)cLB(r—1). Ex. MATRIXIN-
VERS (X)Y); <MATRIXINVERS> e LB(1).
In SW (switch) element, zcLB(1). Ex. «: (SIN(X) gtq COS(Y))—3: else goto 7:;,

COMPILAR GENERATING SYSTEM 27
here <SIN, COS> cZl, <gtq(=)> 2"
4, 3. Main-part and Reduction. Generally, writing a program with L(x,y) is to write
it by using subroutines in LB(r-1) set up by that time. In this meaning, a rank-
7-program is denoted as [s]=(X,S)/on LB(r-1) and we call it the main-part of the
program s. Here X is the set of blocks in s and S is the set of switches in s.
A subroutine which is contained in s and not belonging to Z° is called a directly

1¢2]
subroutine of s and its set is written as D(s5)={S!, S%....,51} and Si:kl_JlSki,

steZi(1LiLr1), and we assume at least one of S* is not empty.

Reduction (p(s)) of program s is defined as that in which we replace all sub-
routines s¢ of D(s) with their main-parts; in the other words, we replace rank-i-
subroutine s(€Z?) with [s!] on LB(-1). If the subroutines of D(s) are at most
rank-i (1<i<r-1), the subroutine of D(p(s)) is at most rank-(s-1). So on most oc-
casions (7-1) reductions a rank-7 program can be reduced to program on LB(0).
Example; Let the main-part of a program « be [a]=(8i, B2. 83, a° C.) where D(a)
={B1,P2,Ps} cLB(r—1) and C. is the set of carriers in «, a®cZ® CacC, then p%a)
is a rank—0—program. The following in formation is stored in LB (r—1).

ﬁlz(rly 71 51; Cﬁ])y ﬁ2:(7'2; Cﬂz)s 183:(7/3» 0, Cﬂ3)y 7’1:(51) 52y Cn)’
T2:(539 crz)! 73:(@’ Cra)' 51'—'(@, Céj)y 52:(@; Cﬁz); 53:(@’ C53)

They are illustrated as follows:

©O©O

D
Er—@
D

Fig. 1.

Therefore,

pl)=[a] [f:] [B:] [Bs]
pXe)=[al [B:] [B2] [Bs] [r:] [rel [0:] [1s] [0:]
P3(C¥)=[6¥] [B1] [82] [Bs] [r4] [re] [04] [7s] [02] [3s]).

This is illustrated by Fig. 2.

28 K. FUJINO

Fig. 2.

5. Function of CS(x, v)

CS(X, Y) has four parts named INTRO, DECLARE, TRANSFORMATION and
ALLOCATION.
(1) INTRO and DECLARE parts change a source program s={s;;} written on
LB(r—1) of L(X) to s={s;} on standard code of CS(X, Y).
(2) TRANSFORMATION part (Operation, Substitute and Switching) transform
s to ; by the following steps.

1) Divide 5; the transformable relation .

2) Generate the object relation s on LB(r—1) of L(Y) corresponding to ij.

3) Make the undecided coefficient @ for allocation associated with ;m.
Therefore s={s5ixU Jm} is obtained.
(3) ALLOCATION part

1) Make the decided information ALI(@) for @i

2) If s requires registration, s is made as closed subroutine and register it into
LB(r—1) of L(Y).

3) If s requires reduction, s is reduced to s on LB(0) of I:(Y).

6. Methods of CGS

6. 1. Self Growing method. In this method,

(1) Make a basic compiler CS°i, j, j) being necessary for self-expansion. Its in-
put language is L), being a basic part of L(i).

(2) Write the implementation of the next step compiler CS'(, j, j) using L°%),
and give it to CS%, j, j), then the resultant CS'(Z, j, 7) has the input language
L1(7) containing L%() as a subset.

@) In the same way as (2), generate CS»(i, j, j) from CS*~I(i, j, j) until L*() of
CS™(i, j, j) satisfies the required specification of L(7).

Program (CS?(i, j, j)jon L*=}@)—| CS*"1G, j,) |= CS*G, j, j)-
- (1<p=n)

COMPILAR GENERATING SYSTEM 29

6. 2. Transformation method. When one CS(, j, j) exists, we generate CS(, k, k)
having the same function with CS(, j, j), through the following steps in this
method.
@)

CSG, j, H——CSG, j, k)—CS(, k, k).
Step i) 1) A table called MIGT(j) containing the group of L(j) instructions com-
posing each operation, and a table called OSNT(j) associated with the number re-
presenting the stored position on MIGT(j), are converted to MIGT(%) and OSNT (%)
respectively. 2) Modify the address part of the instructions containéd in the imple-
mentation of CS(, j, 7) about the conversion of MIGT. 3) If the basis of the numeric
expression of L(j) and L(k) is different, we change the counter necessary to the com-
putation of the undecided coefficient of allocation and the necessary counter to the
relative address of variables and constants, to the base of It(k). Otherwise, the
necessary function for modification of the basis is given to the loading routine of
L(k).
step i) Write CSG, 7, §) with L(i, j) and input it to the CS(, j, k), then we have
CS(, k, k).

7. L(U) of CGS
In this section L(U) is described briefly.

7. 1. Special declaration

TABLE Declare statement, TABLE SEP-10 (5//2, sp-10) defines a table named SEP-
10 and having 5 terms, and each term has two elements and sp-10 is a variable
representing the current depth of the table. Such informations about each table
is stored in the table called TABLENAME-TABLE.

wl Tt specifies the word length of variables being not array. For example, wl
%, ¥, 2(2);. This means the word length of x, y and z is 2 words.

7. 2. Operation Part (OP)

This part represents computation ; the following operations are allowed : Arithme-
tic operator (+, —, *), Relational operator (gtr(>), geq(=), =, neq(s)), Logical
operator (or and, not), Special operator (//word pointing operator, A//2 means the
2nd word of A), Assignment operator (—). Operators associated with index: ind,
for example ind(2) means the content of the index-2, @, A@2 represents the ele-
ment specified by the index-2.

7. 3. Switching Function (SW). It has the forms:

SW GOTO ?a; or
SW(B)—(Cy), Ba)—(Cy), , Bu_1)—{(Cn_y), ELSE(C,); is equivalent to
if B, then C, else if B; then G, if, , if By_y then C, 4 else Cu;

30 K. FUJINO

Here ?a is a label, label identifier must begin with symbol 2.
7. 4. Subroutine calling (SB)

For example, SB INCI(X, Y;a, b; ?p, ?q); See Example in §9.
7. 5. MACRO instruction. We define the following MACRO instruction having
the speciality of the machine codes fully, to level up the efficiency of the generat-
ed compiler, and we can make the necessary MACRO instructions by using

declaration statement described below.

MACRO Declaration Statement :

(A) DC DMI XXXXX(X;, Xs,...... y Xm)
[machine instruction (1)}
[machine instruction (2)]

®) B

[machine instruction (#)]

Part (A) XXXXX 1is an identifier representing the name of MACRO instruction.
(X1, Xa...... , Xm) is the list of the formal variables, where 0<m<10.

Part (B) This is the sequence of machine instructions (€L()) composing MACRO
operation, and each instruction is a string of 12 digits. For example, MACRO

order JEQ represents a statement :

if A=B then go to ?P else ?Q;

DMI JEQ (A, B, ?P, ?2Q) ~
: (® Operation code (el (y))
@ Number or necessary information
® Flag representing to require information
as a coordinate.

Fig. 3.

These four machine instructions are stored, for example, from the location & to €&
+3 of the table called machine instruction table (MIGT), and the information

AM1M1!\/Q Address /ilndex specification
4) —
[l , : , ‘ I ! ! ! I I I l I ‘ l +Glassiﬁcation code
—— ¥ t
Operation Code PMI PM2

M

Fig. 4,

COMPILAR GENERATING SYSTEM 31

(€, 4) are put on the MACRONAMETABLE (MNT). MAIT is a table storing up
to 10 actual parameters. Machine instruction is illustrated as Fig. 4.
If AM part ie. (AM1, AM2)=(i, j), then its address part is made from the ¢-th
actual parameter stored in MAIT (j). PM part (PM1, PM2) shows the print for-
mat of address part and the parameter to be attached to the instruction. If PMI1
=0, information is given from other part. If PM1=2, the address is made as
absolute address. PM2 represents the kind of parameters:
1: coordinate, 2: variable, 3: constant, 5: array variable, 6: formal variable,
7 : working memory, 9: common variable.

The content of classification codes specifies the following characteristics of the
instruction :
0: the address part is not required from MAIT.

instruction result
5900e9000200.................. 5940002 ;
33003d002200.................. 33*000b ;
120003000100.................. 12*0001 (constant) ;

1: the left operand is required.

instruction left operand output form
120000000001............ 2000200............ 12*0002 (variable) ;
120000000001............ 5040110............ 12*0401 (array variable), 1index ;

the right operand is required, as same as case of 1:

3: subroutine parameter is required.

instruction output form
4200001ext03.......ccuevnennee. 42+40001*0(ext);

4: only the address part is required.

instruction output form
000003000504 *0005(constant) ;

Remarks: We can construct a CS° (i, j, j) by using only variable, constant, co-
ordinate, PRG, REG, DC (array, TABLE) and MACRO instruction in the grammer
of L(U). The example at the end of this paper shows this method.

8. Notes on Input Data

The size of the tables cannot bz decided because each compiler naturally a dif
ferent capacity according to the base machine M(B), and we cannot decide the
maximum number of the variables, constants, formal variables, labels and array
variables available before the implementation of CS(A, B) is generated. Moreover,
the format of each of thé terms of tables and the size of tables should bhe

32

given as variables.
affected with the input and output equipment of the base M(B).

K. FUJINO

Representataion of elements and their internal codes are

Therefore, we

have to write the syntactical data specifying these elements with variables.

9. CS(A,B)

The following steps explain a method to generate a compiler CS(4, B).
1) Decide X=A, Y=B, Z=B
2) Make MACRO orders declaration for L(B)
3) Remove the unnecessary parts from CS(X, Y, Z) written with L(U), and
append the lacking parts to it.
4) Give the MACRO declaration (by step 2)) and the modified CS(X, Y, Z) on
L(U) (by step 3)) into CGS, then formal implementation of CS(A4, B) written
with Z(B) and information a(A, B) associatd with it are obtained.
5) Required compiler is CS(A, B) on L(B)+a(A, B)
Note: Generated programs cannot often be directly loaded into M(B) since
they are typed out by the output equipment of the base machine M(j)
of CGS. In this case we have to type it with equipment of M(B).
The following program example is a part of representation written with L(U)
of a compiler. This is the input information to the experimental CGS(x, y, z; U, 7)
where j is TOSBAC-3121, x is a language similar to FORTRAN, v is NEAC-2203

and z is NEAC-2203.

REG READSB

These machines are installed at WASEDA University.

20 DC TABLE SEP-10 (5//2, sp-10), SEP-11 (5//2, sp-11), SEP-12 (20//, sp-12) :
ARRAY KS (10//1);

DMI

JEQH (A, B, YES, NO)
191000000000 152000000000 053001000000 434001000000 ;
CLEAR(A)
181000000000 ;
READ1 (X)
66003d100200 111000000000 ;
RAISE (A, *n)
301000000000 28203d000000 ; 111000000000 ;
ADDA (X, Y)
201000000000 112000000000 ;
RETURN (*1)
4301000000000 ;
GOTO (?X)
431001000000 ;
LSFH (4, *n)
191000000000 51203d000000 ;
LOADI (X, Y)
7212000000000 ;
STORI (X, Y)

COMPILAR GENERATING SYSTEM 33

731200000000 ;
EXTH (4, B, C)
152000000000 081000000000 113000000000 ;
SETH (X, Y)
191000000000 112000000000 ;
SET (X, Y)
301000000000 112000000000 ; K
21 CLEAR (W), CLEAR (NW), STORI (WMI, *1), STORI (WM 2, ¥2), STORI
‘ (WM3, *3) K
22 READ1 (C) K
SB INCO (C, SEP-10, ?2) K
?3 SB INCO (C, SEP-11,) K
RAISE (NW, *1) K
SB INC1 (C, SEP-12; W, IW ; ?W20) K
LSFH (W, *2), ADDA (C, W), GOTO (?2) K

24 JEQ (NW, zero, ?2), LOADI (NW, 1), EXTH (W, KSO 1, HW) K

? WCLS JEQH (HW, D/IG, ? W2), JEQH (HW, D/LET, ? W3), JEQH (HW, D/j?, ?W4,
PWO1) K

PW2 SETH (CDUSN, IW), GOTO (? W20) K

W3 SB INC1 (W, DEL; W, IW; ?W20), INC1 (W, LGVAL; W, IW; ? W20),
INC 1 (W, STANF; W, IW; ?20) K
SETH (CDID, IW), GOTO (*W20) K

W4 SETH (CDLAB, IW), GOTO (? W20) K
?WO0l SB PRINT (‘ERROR WCLS 1)
?W 20 LOADI (WML, *1), LOADI (WM 2, *2), LOADI (WM 3, *¥3) RETURN (*3) K

%
Explanation of the words used in the above program:
SEP 10...table of the elements we can skip and their length is 1 character.
SEP11...table of separators whose length is 1 character.
SEP 12...table of operators whose length is 1 character
ADDA (X, Y)..Y :=ACC+X
CLEAR (A)...A:=0
EXTH (A4, B, C)...C:=AnB (nis logical and operator)
JEQH (A, B, YES, NO)...If A=B then go to YES else go to NO;
GOTO (? X)...go to ? X ;
LOADI (X, Y)...index (¥):=X
LSFH (A4, *x)...ACC :=A, and left shift the content of ACC by # characters.
RAISE (A4, *n)...A:=A+n
READ1 (X)...Read 1 character from tape reader and put it in X.
RETURN (*3)...go to the address indicated by index (3).
SET (X, V) ...Y :=X (X, Y are numbers)
SETH (X, Y)...Y :=X (X, Y are numbers)
STORI (X, V)...X:=index (Y)
INCO (X, Y, ?p)...if XeVY then go to ?p else go to next statement.
INC1 (X, Y; a. b; ?P, ?2Q)—if X €Y then begin
a:=code of X;
b :=information of X; go to ?P end else go to ?Q;
HW—heading character of word W
LGVAL—table of logical value
DEL—table of delimiter
STANF—table of standard function
CDUSN—code of unsigned-integer
CDID—code of identifier

34 K. FUJINO
CDLAB—code of label

READSB—name of read subroutine

REG—Process mark requiring to compile the following source program as a subroutine
named READSB (in the above example) and register it into CGS Library.

References
[1] Nocucui, H., K. Fujivo, H. WaranaBe ano H. Wakazuxki, Numerical-Automatic System
for the NEAC-1103 (NEAC-1103 Automatic Programming System) (in Japanese).
The papers of Technical Group on Electronic Computers. The Institute of Electronics
and ommunication Engineers of Japan, July (1963).
The papars of Annual Conference of

[2] Fupjwo, K., A Problem of Allocation in Numeric.
the Information Processing Society of Japan, December 5, 1963.

