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Evaluation of Systems by Stochastic Process Models
SETsuo OsucA*®

1. Dntroduction

It is well understood that a stochastic process is a mathematical model that is
usefull in the analysis of a complex system. A stochastic process is based on
the concept of state and its transition. In the following, we focus our attention
on a finite state, continuous time stochastic process, where a system occupies one
of N different states and the time between transitions is a random variable of
which distribution function is not confined to particular one but allowed to be of
arbitrariry defined.

Our object is to develope a theoretical method to represent a system performance
by a single dimensional value that is obtained by combining several characteristics
of the system such as capacity, reliability and maintenability, at substantially, non
steady state condition, thus allowing easy comparison among many systems and
to select one system out of them.

2. Theory of Economical Evaluation of a System
——An Analysis of Stochastic Process with Rewards

Suppose that a N-state stochastic process produces an amount of value denoted
by pi(f) 4t when it is in state ¢ between ¢ and #+44¢, and also produces 7;(f) when
it makes a transition from state ¢ to j at £. We call py(¢) and 7;(f) the ‘‘state re-
ward density ”’ and ‘‘ transition reward’’ respectively. It must be noted that p(?)
and ri;(f) are different dimentional quantities and also both are functions of time
that means the value of a system depend not only on the probabilistic property
but also on the time.

The value may be an economical value but it can be any other physical quantity
relevant to the problem.

Thus, as time goes on, the stochastic process produces an amount of value that
is obtained by integration of reward density that is composed of a sequence of
parts of the several state reward densities added with transition rewards both are
governed by the sequence of transitions. The particular sequence of the state
reward densities corresponding to one particular sequence of transitions is called
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a “reward density of the system’ that is a sample of every possible sequences
of transitions in finite time interval.

If we can know the probabilities of occurrence of every possible sequences of
transitions, we can get an ensemble average of these sequences of reward densi-
ties which is also function of time and we call it an ‘‘average reward density
function of the system.” Thus, by integration of it between [0, 7] we can get
a quantity that is feasible index of the value of the system, and we call it
“gystem value ”’.

These quantities depend on the initial state of the system and we denote ‘‘ aver-
age reward density function of the system’ as wi(f) and ‘ system value” as
Wi(T) indicating their initial states were 7.

Besides these, we use an illustrative notation w,(f) that denotes a subset out of
the ensemble of the reward densities of the system of which number of transitions
between [0, T] was #.

Let us trace the transition points and identify them as #, %, Zs...... and denote
their inter-transition intervals as 7y, Ts, Ts...... , Ty, where Ti=t;—t;-1 (=1, 2, 3,
...... , #). In the following, the ‘‘system value’’ is obtained for several cases.

2. 1. The Case of 2 States

We suppose the system has 2 states named state 1 and 2 respectively, When

initial state was 1, general form of the “reward density of the system’ is

(O =pr (B 1— St tas-2) =t =t} | +-pa0) 5 el — oxo)— i — a0},
and
Whoni (0 =pu(B] 1= B {lt o)~ —ta)} —tt—tncr) |

+pa(2) LZ:]]{ u(t—rtoi 1) —u(t—1u)} +u(t— t2n+1):| s 2. D

where w«(f) is Heaviside’s unit step function and »=0, 1, 2, ...... .
For simplicity, we put p(Hu(t—t:)=p(t, ;). Supporse the distribution of the
time from the %k’th to the k+1'th transition is fi(f), then probability of occurrence

of a series of transitions at time #;, #, ...... tn is [[f(T%) dTe, and if the relation
k=1

n n+1
tn=Y Tu< T<tn1= ZlTlc is held, ensemble average of the ‘“‘reward density func-
k=1 k=
tion of the system’’ is

wit)=wo @\ TF(TATe+ | AT AT, AT T,
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Substituting Eqgs. (2. 1), Eq. (2. 2) yield

W@ =p&—§ AT b, t)—palt, t1ATs+
+ {7 A@am] AT it —pat, 1A To

T T-¢2 T=tpn-1
0 S

VR WAE A T2 a1 R AC P Y S S CASE PR
—p2<t1 tn)]dTn‘I‘ ...... . (2. 3)

Now, put pu(T—x)=pe(®) (k=1 or 2),
and we define following convolution functions Zm(f) (=1 or 2),

ha) =\, Fule— 2B dx=FPi

hkm(t):S;fn_m_l(t—x)hm_l(x)dx: n—'m+1*fn—m+2* ...... n*ﬁ (2. 4)
Then
S‘h,m (t)dtzg‘fl(mdr,g“‘ ...... SH"“bfn(Tn)dTnST"‘"mx)dx @. 5)
0 0 (1] 1] 0

can be easily proved and WXT) is obtained as follows,
T L T
W)= pat+ T (D ) —hat))dt. (2. 6)

Let Laplace transform of Z(f), pu(t) and fi(f) be Hu(s), Pi(s) and Fi(s) respec-
tively. Then we can obtain,

W(D)={ it =1 LI~ [Pt @ 7

where L1{ } means inverse transform operator.

Py(s) is a Laplace transform of px(T—x) in regard to variable x and implicitly
include 7 in it. So, WXT) is comparatively complex function of 7. However,
we suppose temporarily that 7 included implicitly in Pi(s) is fixed and take Laplace
transform of Eq. (2. 7) in regard to 7. Then we can obtain

W)= Pr(9)+ E D/~ FAO). @ 8)

This gives a correct result only when #=7. However, Pi(s)—Ps(s) would be
independent of 7T, Eq. (2. 10) is always justified.
In most cases, distribution function is specified to the state as

Jonnr(O)=f(t) and fau(t)=2().
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Then we obtain
W) =(1/5) Pys)— (/)L Po(s)— Po()IF(S)[1— G(8))I1—F(s)G(s)]. 2.9

In the case initial state was state 2, Pi(s) and Ps(s) are exchanged.

2. 2. The case of N States

We suppose the case of N states. The distribution function of the time of
trasition from state 7 to j after then transition to state ¢ from any other state has
occurred is designated f;;(¢), then Jéi fi; &) =Ffi(f) means the distribution function of

inter-transition time of state 7 regardless of next state. Suppose the system changes
the state in the sequence of 7, 7, &, ...... , 1, m and number of transitions is #
between [0, T, that is, Ty+1>7T>Tx. Then, as in the preceeding case,

wa Q)= O)—pul, 1)+ 8)—DiC, t)+ ...
Foult, tac)—Dult, ta) FDmlt, ta). (2. 10)

(X3

We take an ensemble average and obtain the ‘‘ average reward density of the

system ”’

wt)=p AT+ B SATOBO—pit, 0+t 14T [(TDAT,
+ % 5 U rmian{ s —pt, 0040, —pit, 1)
Jx%j kxjJ0 0
T 0ult, ;fz)]arTZS‘;lzﬁ(g)d’ﬂmL ....... @. 11)
Then Laplace transform of the system value between [O, T] is obtained as

follows,
Wi(s)= Pus)/s— (l/S)Pi(S)j;F w(8)+ (1/S)j§iF 1i(S)Pi(s) —(l/f)g f ij(s)Pj(s% ;} Fi(s)

+1/9) T & FulOFa()Ps)— oo 2. 12)

As in the preceeding case, this gives correct result only when ¢=T unless
pi(t)s are independent of 7.

We define null functions Fyu(s)=0 and use column vector W(s), P(s) and W(s)
with components Wi(s), Pi(s) and Ps)Fi(s) respectively. Moreover, we define a
matrix F(s) with component Fi(s) and a diagonal matrix F(s) with component
Fi(s), then Eq. (2. 12) becomes

W(s)=(1/s){ P(s)+ F(s)P(s)+ F(s2P(s)+ F(s*P(s)+......}
—A/H{V($)+F($)V(s)+ F(s)2V(s)+ F(sPV(s)+......}
=()I—F$I"'[P(5)— V(s)]- 2. 13)
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2. 3. Transition Rewards
We consider the case when the system produces the reward #;(f) accompanied
with the transition from state ¢ to state 7. The transition rewards are derived
from the preceeding case introducing auxilary interim state corresponding to each
state and making their state times tend to 0. Let us suppose there is interim
state 7 always immediately preceeding to state j and the transition from any
state to state j is decomposed to two transitions, first to state 7 and then from
7 to j. The stay time in state 7 is supposed to be small constant ¢ and, while
in this state, we define the reward density ¢;;(f) to the system such that it satisfy
the relation ag:({)=7,(f) when @ tend to 0. By the same process as preceeding
case and making « tend to 0, we can get
W(s)=(1/s)[ I—F($)] [ T—F(s)|P(s)+[I—F(s)] ' R(s) 2. 14)
where R(s) is a column vector with component > F;(s)R:;(s).
J
2. 4. Markov Process
When the inter-transition time distributions are all given as exponential, we
can get simpler form. Suppose a transition probability from state 7 to state j is
given as a;;4t regardless of its past history, then,
fij(x):aij €Xp (waijx?c H .Sma’ik exp (~aikz)dz: A XD (—-—k};:am).
Elyjo X k2
We can denote
U—F(s)]'=(1/Dl4:], (2. 15)

where 4 is a determinant of [I—F(s)] and 4;;’s are the cofactors of [I—F(s)]. Let
us define a matrix A with —a; as the diagonal components and a;; as the (Z, j)
components (i=j), then 4 and 4;; are expressed as follows,

N
a=[sI—A|/[I(s+a),

—_— N
dij=(s+ai) Aij/kl;[o(s"l-ak) 2. 16)
where 4;;’s are the cofactors of [sJ—A]. As the diagonal components of [I—F(s)]
are 1—a;/(s+a;)=s/(s+a;), we obtain
[I—F(s)]™! [I—F(s)]=(s/Ndis/(s +a:)]=s[sT—A]",
and

W (s)=(1/s) I~ F(s)] [ T—FS){ P)+ I F() R(s)}
=[sI—A"'[P(s)+ R(s)], @ 17)

where R(s) is a column vector with the components Y a;;R:;(s).
i%j
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In a particular case when p.(f)=const.=p; and #;;(f)=const.=ry,,
W(s)=(1/s)[sI—A]"{(P+ R)
is obtained and this coincides with that of R.A. Howard.®
2. 5. Deduction of Several Probabilistic Characteristics
From the preceeding results, we can deduce several meaningfull characteristics
of the system.

2. 5. 1. Time Fraction of a State at Steady State

Time fraction of a state, for instance state 7, or in other word, the probability
v; that the system is in state ¢ at arbitrarily chosen time ¢ at steady state, is
derived. We substitute p;(f)=1 and p;({)=0 (j=i) into Eq. (2. 13) which,in this
case, always gives the correct result. If there exists steady state, v; approaches
asymtoticaly constant value regardless of initial state, and so we multiply row
vector C; of which components are all 0 except i'th component that is 1 to Eq.
(2. 13) from left side and denote it W;(s), that is,

Wi(s)=(1/s)CiLI—F(s)| [ I—F(s)1P, (2. 18)

where P is a column vector with the components 0 except 'th one that is 1.
Then, v; can be shown as

w=lim W(T)/ T=lim dW(T)/dT=lim sLW(TYdT}=lim $Wi(s). (2. 19)
T—» — s—0 s

Substituting Eq. (2. 18) into Eq. (2. 19), we obtain

yi:linolCi[ImF(s)]’I[I—Rs)]P:lin(r)l 41— Fys))/ | I—F ()], 2. 20)

where 4;; is the (4, i) cofactor of [I—F(s)].
This result can be used to know the system availability or the like.

2. 5. 2. Mean Time to Get at Specifled State First
Mean time the system first get at any specified state, for instance state %, after
starting from state i can also be derived. Let the state % be end state, that is
Jeix)=0, (k) and pux)=0 and p;(x)=1 (j=xk).
Then, mean time z can be derived as-
r=lim W(T)=limsWi(s)
T 50

This result can be used to get MTTFF (Mean Time To First Failure) or the
like.

2. 5. 3. The Probability That the System Is in a Specified State at Given Time
Let the probability that the-system is in a state % at time ¢ after starting from
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state i be &() and its Laplace transform be Bi(s). As the system value is

expressed as following way
;b/f(t)pj(i):d Wi)/dt,

we can get Bii(s) substituting pu()=1 and p;(H)=0, (j=k), into Eq. (2. 13) and
calculating sWi(s).

2. 6. A Simulation by the Analog Computation Method

The calculation of the system reward is troublesome and it is hoped to get the
reward more easily for practical purpose. Here, we propose a simulation by the
analog computation method. As an illustrating example, we use the result of the
2 states. In Eq. (2. 9), first term of right side is a simple integration term and
few problems. The second term is analogous toa response function in the feed
back control system illustrated in Fig. 1 with the input pi(f)—pa(t), and the output
of this system at ¢=T starting from /=0 is what we want. An example of this

method is shown in the next section.

o N i Wi(T)
PL() =Pt ——0 F(s) s S IR g

G(s)

Fig. 1. An Example of Analog Simulation Block Diagram.

3. Some Applications to the System Design

The preceeding method is applied to the system design of real time information
processing system. A real time system is not always in the steady state because
its input rate varies with time and this fact is one of the reasons why the sys-
tem becomes too large because a system is sometimes designed to adapt to the
peak input rate. However, a system designer must take into account the reliabili-
ty and maintenability as well. These factors of the system design are all com-
bined to one dimensional *system value’’ to allow easy evaluation of the system.

The system value, here, is thought to depend on the number of input requests
that could not be processed immediately because of (1) overflow to the system
and (2) the system’s failure.

Contribution of each lost input to the system value is supposed to be C; for
case (1) and C; for case (2) (These are negative ‘‘value’ to the gystem).

As an example, we suppose the case of 2 states, that is, the system is operat-
ing (state 1) and the system has failured and is under repaire (state 2)



8 S. OSUGA

state reward densities are approximately p(#)=C; max (A(£)—p, o) and Doty =CoA()
respectively where A(f) is input rate and g is system’s capacity (=1/throughput).
As the space is restricted, we show only a few examples.

Fig. 2. shows the case of single system where the system is supposed to fail
by chance, that is, in accordance with negative exponential distribution with
MTBF (Mean Time Between Failure)l/a. Then, F(s)=a/(s+a) is substituted in
Eq. (2. 9). Two cases of distributions of g(x) are shown.

Parallel redudant system with one repaire man also supposed to fail by chance
is represented by 3 states; state 0 (both subsystem operating), state 1 (one sub-
system operating and the other under repair), and state 2 (one subsystem under
repair and the other waiting). We can obtain

Fo(5)=2a/(s+2a),

Fio()=G(s+a),
Fio(s)=a[l—G(s+a)]/(s+a),
Fa(s)=[s/(s—a)[G(e)—G()}/[1—-G(a)],

while all other components are 0. G(s) is Laplace transform of repair time distribu-
tion.
Substituting them into Eq. (2, 13), we can get the system value.

Time fraction of state 2 and MTTFF when system’s initial state was state 0 are

derived, as
1007 g(x)=pe~# - 1007 g(x)=5(x—1) e

8 S 3

5 - E

3 o

Y A N

= 3 =

=z =

5.0 1 /( —x— 5.0

@ / A A @ " output
=2 / L2 &Tu»{il—»
£ « e

p3 o ] e

: y4 J |

/ i/ /
,// A Block diagram for case (b)
0 e 0 /l
27° 27° 27 2% 272 21 29%4g)co 2% 2° 27 27 22 21 g(y6)e
Mean repairtime me, 1,78 (hr) o Mean repairtime,  (hr)
(a) : (b)
Nyvivviiiiinanin, Cace 1 f(x)=a e
A(t) =4 2N(T-1)|T...Case 2 a=1/51.2 hr.
2Nt|T ... Case 3

Fig. 2. System loss vs. mean repaire time (Single system).
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vy=2[ma--G(a)—11/[2ma+ G(a)],
MTTFF =(3/2a)[1—(2/3)G(@)]/[1—G(a)],

where m=-—G’(0) means mean repair time.

In the case of parallel redundant system with two repair men, there need in-
finite number of states to represent the system except when repair time is also
exponentially distributed because every state besides both operating depend on the
past history and have different distributions of time. This infinite state system
is out of our scope and more study is necessary. )

Besides these simple examples, many other system configurations were treated.
The problem of analytical comparison between parallel redundant and stand-by
system with the file recovery time in mind and multiple processor system super-
vised by one control unit are few examples of them though not shown here.

4, Conclusion

We tried to develope the method to evaluate a system with time variational
reward density using a stochastic process. If the system is described as a Markov
process with the fixed rewards, simpler method is already obtained. We investi-
gated the problem from the another point of view and obtained the results for
the cases not confined to a simple Markov process and with the time variational
rewards. As the real system can not always be represented by the Markov pro-
cess, this extension seems to be necessary.

Meanwhile, there arose a problem of infinite state process that can not be
treated by our method and more study is necessary.
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