Information Processing in Japan Vol. 8, 1968

A Variable Length Storage Allocator
and its Garbage Collector

Yosumiko Furamura*, Kuniko FUTAMURA

This report describes a mechanism of storage management employed by a storage allo-
cator to allocate variable length computer storages, as well as a mechanism of reclaiming
used storages. As in LISP 1.5, this storage allocator divides the storage area into two
sections : the free storage and the full word space. These two sections are each managed
in different ways. Namely, in the full word space, the storages are relocated (“ packed)
when the used storages are collected. The method described in this report is advantageous
for a computer with bit operation instructions to implement a symbol manipulation system

with a mechanism of automatically reclaiming used storages such as LISP.

1. Imtroduction

It is advantageous to use multi-word items in list structures to attain savings not only
in the amount of time required for list processing, but also in the storage required for the
list structure [1]. When we were using a HITAC-5020 computer to implement HELP
(Hitachi Experimental List Processor), a symbol manipulation system which is a dialect of
LISP 1.5 [2], we decided to use multi-word blocks as the list elements containing BCD
character strings or numbers. Consequently, the storage allocator must have the ability to
allocate variable length storages and to reclaim used multi-word blocks. This report describes
the methods of storage allocation used in this system.

The atom and number structure of HELP is shown in Fig. 1.
Atom

I 1 B
NPT

Number

M p+1 Words

Fig. 1. Atom and number structure in HELP.

N is a 5-bit field; P is an 8-bit field; and 7 is a 3-bit field. (In
the HITAC-5020, one computer word consists of 32 bits) The
content of N is a definite number indicating that the half-word (16-bit
field) is not a pointer. The content of P is a number indicating the
size of the block pointed to by the right half of the word. (In the
diagram here, the contents of P are indicated by p, 0<p<255.) The
content of 7" is a number indicating the type of numerical value.

p+1 Words

This paper first appeared in Jaéanese in Joho Shori (the Journal of the Information Processing
Society of Japan), Vol. 8, No. 4 (1967), pp. 207~210.
* Section 7. Central Research Laboratory, Hitachi, Ltd.
26

A VARIABLE LENGTH STORAGE ALLOCATOR AND ITS GARBAGE COLLECTOR 27

This structure was based on the following concept. Data like BCD character strings
or numbers, which may be more easily processed together in blocks than by analysis into a
list, are stored as blocks. In making up these list structures, the HELP storage allocator
allocates storages of variable lengths. In the same manner as in reference [2], the storage
area is divided into two sections: a free storage for pointer words (computer words contain-
ing pointers) and a full word space for full words (computer words for blocks including BCD
character strings or numbers). These two sections are each managed separately. If the
storage area is exhausted during system execution, the HELP garbage collector is automati-
cally called, and the used storages are collected so that they may be re-used. This operation
is called ““garbage collection”. When the free storage is exhausted, the garbage collector
will scan only the free storage to collect the used pointer words. Even though there may
be an increased number of pointer words used to make up the list structure, it does not
necessarily follow that there will be an increase in the number of full words used in the
list structure. Therefore, in this case, there is no need to perform garbage collection in the
full word space. However, when the full word space is exhausted, garbage collection is
performed in both the free storage and full word space. When garbage collection is performed

in the full word space, the blocks are relocated in order to eliminate gaps.

2. Management of the Storage Area
2.1. Management of the Free Storage

A bit table is provided corresponding to the free storage. There is a one-to-one cor-
respondence between each word in the free storage and each bit in the bit table. When a
word is available, its corresponding bit is set to 1. When a word is used, its corresponding

bit is set to 0. (See Fig. 2.)

free storage bit; table free storage bit table

la —— — O lt — — — — Q)
e — ——— =D b — — — — (D
4——-————»@ _____ >®
DU !
L g

- — — — == I — — ——»(
bt — ———=(D g - — = —— Q)
e — —~ — — =) . - e — = —)
I —G

Fig. 2. Correspondence between free storage and bit table.
When all of the free storage words are available, all of the
bits in the bit table are set to 1 (diagram on left). When a word
is used, the corresponding bit is set to 0 (diagram on right). The
shaded parts of the diagram indicate the used words. The bit
table is located outside of the storage area but within the system area.

When a pointer word is required, the HELP storage allocator scans the bit table. If it
finds a bit with value 1, it extracts the word corresponding to the first bit having the value

1. Then it changes the value of the bit to 0. The HITAC-5020 computer is equipped
with a bit operation instruction (FTL) for finding the first bit with value 1 on the left side

28 Y. FUTAMURA, K. FUTAMURA

in a 32-bit or a 64-bit field, and then changing its value to 0. Therefore, this method is
more advantageous than the usual method of maintaining free storage linking all available
storages in a list. If all of the bits in the bit table have a value 0, the garbage collector
is called.
2.2. Management of the Full Word Space

A Dbit table is not provided corresponding to the full word space. Instead, a system
register TAVB (Top of AVailable Block) is used to point to the first available word in the
full word space. If a block of n words is required to contain a BCD character string or a

number, the HELP storage allocator will extract #» words, beginning with the word indicated

Full word space Fult word space
TAVB
P aan 2 I S }n \/ﬁ{%&
y224 <[]

Fig. 3. Full word space and TAVB.

TAVB points to the first available word in the full word
space. When n words are used, the state shown in the dia-
gram on the left changes to that shown in the diagram on
the right.

by the system register TAVB. Then the contents of TAVB will be increased by 7n. (See
Fig. 3.) However, if the full word space does not have the required number of available

words, the garbage collector is called.

3. The HELP Garbage Collector

The following terms are to be used with the definitions given below :

Active word (or block): A word (or block) in the storage area which can be traced by
pointers from the left half-words of the system registers Base 1, Base 2,...... Base [.

Used word (or block): A word (or block) in the storage area which is not an active
word (or block).

3.1. Garbage Collection When Free Storage Is Exhausted
Step 1.

All the bits on the bit table are set to 1, and ¢ is set to 1. The stack is set to empty.
Then step 2 is performed.

Step 2.

If ¢>1, garbage collection is stopped. If <, step 3 is performed. In this case, the
word indicated by the pointer of the left half-word of Base ¢ (the left pointer) will be the
word to be examined.

Step 3.
Let = be the word to be examined. When z is a pointer word, step 4 will be per-

formed if the bit corresponding to 2« is 0. If the bit corresponding to x is 1, this bit will

A VARIABLE LENGTH STORAGE ALLOCATOR AND ITS GARBAGE COLLECTOR 29

be changed to 0 and step 5 will be performed, with x as the word to be examined.
If z is not a pointer word, step 4 will be performed.
Step 4.

If the stack is empty, i1 is substituted for ¢, and step 2 is performed.

If the stack is not empty, the word to be examined will be the word which is pointed
to by the right pointer (the contents of the right half-word) of the word at the top of the
stack. The stack will be popped up, and step 3 will be performed.

Step 5.

Let y be the word to be examined. In this case, ¥ is stacked and step 3 is performed,
the word to be examined being the word indicated by the left pointer of y.

By means of steps 1 through 5, all of the bits corresponding to garbage (i.e., used
words) in the free storage are set to 1, and all of the bits corresponding to active words
are set to 0.

3.2. Garbage Collection When Full Word Space Is Exhausted

When the full word space is exhausted, the garbage collector will relocate only the
active blocks, beginning from the first address in the full word space, in order to eliminate
gaps. When this “packing” operation is completed, the system register TAVB will be set
to point to the first available word. (See Fig. 4.)

When active blocks are being relocated, the garbage collector uses the work area (256

core words) and the drum area (taken in the drum and less than the full word space by
256 words.)

BASE 1 Full word space
i / ' 3 Words
o2 o]
NPT | 2 Words
4 Words
TAVB
NPT
BASE 1 Futl word space
; ‘4 Words
C T 33— g 12 Words
g St
LT
NPT
OR3Tl 4 ! Available
NPT

Fig. 4. State of the full word space before and after garbarge
collection.
When garbage collection occurs in the state shown in the
upper diagram, the state will change to the one shown in the
lower diagram. (In this case, /=1.)

30 Y. FUTAMURA, K. FUTAMURA

Step 1.

All of the bits on the bit table are set to 1, and 7 is set to 1. The stack is set to
empty. The left pointer of the system register TAVB is set to the first address in the full
word space. The work area and the drum area are both set to empty. Then step 2 is
performed.

Step 2.

If i>1, the active contents of the drum area are loaded into the full word space, be-
ginning from the top, and the active contents of the work area are transferred to the addresses
immediateiy following. (See Fig. 5.)

Full word space Drum area

/

7

TAVB
Maitabte | L T

Work area

]256 Words

Fig. 5. Transfer of active full words.
The shaded parts of the drum area and of the work
area (Z.e., the active full words) are transferred to
the full word space as indicated by the arrow.

Then the left pointer of TAVB is set to the first available word, and garbage collec-
tion is stopped. ‘

If i<, step 3 is performed. In this case, the word to be examined is the word indicated
by the left pointer of Base i.

Step 3.

Let x be the word to be examined. When x is a pointer word, step 4 will be per-
formed if the bit corresponding to « is 0. If the bit corresponding to x is 1, this bit will
be changed to 0 and step 5 will be performed, with x as the word to be examined.

If z is not a pointer word, step 4 will be performed.

Step 4.

If the stack is empty, /41 will be substituted for 7, and step 2 will be performed.

If the stack is not empty, the word to be examined will be the word which is indicated
by the right pointer of the word at the top of the stack. The stack will be popped up,
and step 3 will be performed.

Step 5.

Let y be the word to be examined. If the right pointer of ¥ points to a full word,
a block, the number of whose word is one more greater than that of the P-field of y, is
selected. This block begins from the full word indicated by the pointér. It is packed into
the first available space in the work area. The left pointer of TAVB is substituted for the

A VARIABLE LENGTH STORAGE ALLOCATOR AND ITS GARBAGE COLLECTOR 31

right pointer of y. Then the size of the block is added to the left pointer of TAVB, and
step 4 is performed. If the work area has become full, its contents are transferred to the
first available space in the drum area, and the next packing jobis performed beginning from
the top of the work area. (See Fig. 6.)

BASE 7 Full word space Work area Drum area
[T~} fuL @

N A \%v’ngds n Words | Available
bl b

= }

}? VWords
p+1 Words
AR
TAVB

EXN

m=FULL+n

BASE: Full word space Work area Drum area

I JeEE)
5 A~ Jirds 256

s Vionds Wards

OEiE | =]

NPT p*1 Vords Available
A~ ~

TAVB /\T

]]

Fig. 6. Packing of blocks into the work area.

In the state shown in the upper diagram, when packing occurs
when p>q, ¢ words in the block are packed in the work area.
Next, the contents of the work area are transferred to the drum
area. Finally, the remaining p+1—¢ words in the block are
packed at the top of the work area. (Lower diagram)

If the right pointer of y does not point to a full word, » is stacked. Then step 3 is
performed, the word to be examined being the word indicated by the left pointer of y.

By means of steps 1 through 5, all of the bits corresponding to active words\are set to
0, and all of the bits corresponding to used words are set to 1. Furthermore, only the

active blocks are packed in the full word space.

4. Conclusion

This storage allocator is used with HELP (Hitachi Experimental List Processor), a symbol
manipulation system which is a dialect of LISP 1.5. Since a drum is used during garbage
collection of the full word space, in the HITAC-5020 computer (core access time 2 s, drum
access time 10ms) approximately 1 second is required for garbage collection of 9,216 words
in free storage and 1,024 words in the full word space. (See Table 1.)

However, since almost all of the storages used for the execution of non-numerical com-
putations consist of pointer words, garbage collection of the full word space rarely occurs in
ordinary symbol manipulation problems. Consequently, even though slightly more time may

be required in the garbage collection, the method described here is considered to be advan-

32 Y. FUTAMURA, K. FUTAMURA

Table 1. Time required for garbage collection (GC).

Number of Execution time of GC
executed N;:mt}; %r Co}fC Total time of job
Job No CONS execu Minimum | Maximum Mean
1 85314 12(P) 0.4 sec 1. 3 sec 0.6 sec 4 min 28. 6 sec
2 190534 {50(P) 1.1sec 1. 2 sec 1. 2 sec 11 min 48. 5 sec
2.1sec(F) | 2.1sec(F) .
3 81602 23(P), 1(F) 1.2 sec 1.9sec(P) | Lbsec(P) 9min 9.4 sec
4 98728 11(P),16(F) 0. 2 sec 0.4 sec 0.3 sec 5 min 26. 1 sec

Each of the P and the F in the table denotes that GC is caused by the exhausion of the free
storage and the full word space, respectively.

tageous for the following two considerations :
" (1) Savings can be made in the processing time (in input-output routines and arithmetical
routines) of BCD character strings and numbers, and also in the storage required for them.
(2) Savings can be made in garbage collection time of the free storage.
Acknowledgment The authors are indebted to Dr. Shozo Shimada and Mr. Kazuma

Yoshimura of the Hitachi Central Research Laboratory for their valuable advices in the

implementation of this system.

References

[1] Comfort, W. T., Multiword list items, Comm. ACM, 7, 6 (June, 1964) 357-362.
[2] McCarthy, J., et al.,, LISP 1.5 Programmer’s manual. Cambridge, Mass., M. I. T. Press, 1962.

