Information Processing in Japan Vol. 9, 1969

An Algorithm to Solve Minimal Cover Problems
KEetcH1 ABE* AND TERUO FUKUMURA*

1. Introduction

A combinatorial algorithm to solve minimal cover problems is described here.
These problems are encountered in minimization of Boolean functions and
considered as the simplest but the most difficult ones among integer program-
ming problems. Although many combinatorial algorithms for integer program-
ming have been reported, it seems that a decisively good one is not yet found.
In fact, the efficiency of an algorithm depends remarkably on the properties of
the problems. This is the reason why we confine ourselves to minimal cover
problems, a special class of integer programming problems. We éxpect that the
effort to construct an algorithm for these problems will bring us many useful
informations about solving the more general problems as well as a fast and
specialized algorithm itself.

9. The Formulation of Minimal Cover Problems
A minimal cover problem is formulated as follows:
Under the constraints

" .
S ezl (1=1,2,...,m) (1
j=1

where c;;=0 or 1 (i=1,2,...,m; j=1,2,...,7n) and
zj=0or 1 (j=12,...,n), (2)

minimize the object function

y= zlx (3)
I=

3. Algorithm
To solve the above problem, we use a matrix C=(ci;) and introduce the
following vectors. We denote the states of rows by
U=(u1, tt2, . .., tm)
u;=0 or +1 (i=1,2,...,m) (4)
and those of columns by
V=(v1,V2...,Va)
v;=0 or =1 (j=1,2,...,n). (5)
The values of the component variables of these vectors bear the following
meanings.

This paper first appeared in Japanese in Joho Shori (the Journal of the Information
Processing Society of Japan), Vol. 10, No. 4 (1969), pp. 227-234.
* Faculty of Engineering, Nagoya University.

9

92 K. ABE & T. FUKUMURA

1: the i-th constraint is satisfied.
ui= | —1: the i-th constraint needs no longer to be satisfied.
0: otherwise.
1: the j-th variable z; is set to 1. (This corresponds to the selection
= of the j-th column in our algorithm.)
—1: the j-th variable x; needs no longer to be set to 1.
0: otherwise.
Initially, both vectors are set to zero vectors. If all u’s become non-zero,
then a feasible solution is obtainable by converting v, to =; according to the
equation

1 lf 'Z)j:].
xjﬁ{o otherwise. ' (6)

3.1 The Reduction of the Matrix

As is generally known, solving a minimal cover problem starts with the
reduction of the matrix C by repeating the following three reduction rules,*
(i) essential term
(ii) row dominance
(iii) column dominance.

A use of one rule may affect possible use of other rules, e.g. if an essential
term reduction is made, the possibilities of column dominance reduction occur

anew. Therefore, we have to restrict the range of affection, as summarized in

Fig. 1.

If there exists a column [

such that C; =1 implies

Cie=1 for all i, set v;=-1.
(column dominance) :

l Pick up rows { such that Ci=1.]

If C,:j’=1 and If C;j =1 impLies

Cu=0 (for all Ciy =1 for all j,

kxj’), set pif=1 set w/=—1.

(essential term) (row dominance)
]

Set U;/’=1 for
all rows s&]mh that
Ci/./ =1,

i
Pick up columns J
such that C:j=1.

©

Eig. 1. Algorithm of matrix reduction.

* These rules are explained, for example, in [1]. It should be noticed that we adopt rows
and columns contrary to custom for the ease of printing the solutions in our program.

AN ALGORITHM TO SOLVE MINIMAL COVER PROBLEMS 93

3.2 Branch and Bound Method

When no more reduction rule can be applied to the matrix, then the problem
is to be solved by means of branch and bound method [2]. In this paper,
we adopted the branching technique in connection with constraints, which can
be expressed as follows.

(1) [Setting a branching point.] Select a row i* whose state u+ is 0, and alter
the state to 1. ,

(2) [Branching to a column.] Select a column j*, for which caxj =1 and vx=0.
Alter the state vj* to 1.

(3) [Recursions.]

(3a) If, selecting the column j* all the states of rows are =*1, a feasible solution
is obtained. Recording the solution, return to the last branching point and
branch into another column not selected yet. If there remains no column
to be selected, return to the next previous branching point and so on.

(3b) If, after selecting the column j*, there remain rows whose states are 0, go
to the next step and branch again.

Considering the situations after selection of the column ;* and alteration
of the state vj from 0 to 1 in (2), they are just the same as the situations after
altering the state vy by essential term reduction rule in Fig. 1. Therefore we
should modify the above algorithm as follows.

“Don’t go at once from (2) to (3), but go from (2) via (2)' to (3).

(2) Apply the reduction rules.”

Similarly, when we return to a branching point, we should alter the state
of the last selected column to —1 (this procedure is necessary for avoiding a
double searching), and apply the reduction rules for this alteration. After all
possible reductions are made, go to (2).

These two modifications of algorithm brought us enormous saving of com-
puting time.

No sophisticated bounding criterion is employed in our algorithm. Only
the number of columns for which v;=1 is always compared with the minimum
value of object function given by the feasible solutions already obtained.

The resulting branch and bound algorithm is shown in Fig. 2.

4. Computer Simulations

We wrote the algorithm discussed above in the form of a Fortran program
and several examples were solved by a digital computer (HITAC 5020E). We
did not make use of bit processing instructions because of machine compatibi-
lities. The results of simulations are summarized in Table 1. All the problems
are given in the reduced form. Problems No. 1~5 are encountered in minimiza-
tion of Boolean functions, but No. 6~10 are made artificially by means of random
numbers.

94 K. ABE & T. FUKUMURA

A feasible solution
is obtained.
Record it.

Set bounding
criterion anew.

bounding
criterjon
satisfied

Return to the
last step.

Alter the state
of the last
seLec%ed column
o-1.

Apply the
redugtioyn rules.

Another selection
of column,

Apply the
reduct igln rules.

Fig. 2. Branch and bound algorithm.

Table 1 The results of computer simulations.

Computing time
Problem N uf;ef; of Négﬁl’g;)gf Number of (sec)
No. m n I’s per row
CPU time | USE time
1 3 2 0 0.167
2 6 6 2 0 0. 251
3 11 11 2.3 1 0. 447
4 26 26 3.8 0 0.990
5 34 33 2.9 2 1.104
6 35 .15 3 2 2. 689
7 30 30 3 3 3. 052
8 30 30 3 3 3.332
9 50 50 3 229 232
10 50 50 3 170 171

8. Discussions and Conclusions

Combinatorial methods to solve integer programming problems give us a
typical question in heuristics. These methods are, essentially, the exhaustive
search of all possible cases, and the efficiency of an algorithm depends largely
on the efficiency of the exhaustion. It seems plausible that before branching
it is recommended to foresee as far as possible to select the better branch.

AN ALGORITHM TO SOLVE MINIMAL COVER PROBLEMS 95

But is it always the case? The time to foresee is consumed each time branch-
ing takes place, while the time saving due to it occurs only on rare occasions.
For this reason, the efficiency of a combinatorial algorithm depends strikingly
on the properties of problems and a sophisticated procedure adaptable to the
type of given problem is desired. The generalization of the algorithm described
in this paper to solve more general integer programming problems must be
studied from this point of view.

References

[1] McCluskey, E.J., Introduction to the Theory of Switching Circuits, McGraw-Hill Inc.
(1965).

[2] Lawler, E.L. and D.E. Wood, Branch and Bound Methods: A Survey, Opns. Res. 14,
p. 699 (1966).

