Information Processing in Japan Vol. 9. 1969

BACS-A Block Diagram Oriented Digital Simulation
Program for the IBM S/360

TSUNETOMO MATSUURA* AND MORIKI TOYAMA**

1. Introduction

It is particularly desirable to perform efficient digital dynamic simulation of
control system with a problem oriented language not to require difficult digital
programming techniques.

This paper describes the features of a block diagram oriented digital simula-
tion language called BACS (Block diagram Analysis Compiler System) and the
program structure of BACS.

BACS was developed in 1964 for IBM 7090 [1] and applied in the solutions
of many types of control systems and improved in 1968 for IBM S/360.

Use of the program has successfully been made within the Mitsubishi Electric
Corp. in the study of control systems by engineers who are unfamiliar with,
or learned a few days course of FORTRAN.

BACS is designed for not only a block diagram system simulator, but also a
general purpose program of the numerical solutions of differential equations.

2. Features of BACS

BACS provides the following desirable features of digital simulation language.

(1) BACS is a block diagram oriented style. It results from the fact that
modern automatic control theory is much connected with a block diagram.

(2) BACS language has the simplicity of usage. BACS input program coded
by users indicates clearer correspondence with a block diagram or differential
equations.

(3) BACS has the flexibility in a user program which is compatible with the
simplicity of usage. In performing the simulation of complex systems, a control
engineer can use FORTRAN in his simulation program.

(4) Computer time processed by BACS compiler before the execution of a
user simulation program is negligibly short in comparison with the execution
time. It is more economical to use BACS than other similar languages.

(5) On-line simulation could be expected by BACS.

This paper first appeared in Japanese in Joho Shori (the Journal of the Information Proces-
sing Society of Japan), Vol. 10, No. 4 (1969), pp. 216-226.
* Information Systems Department, Mitsubisni Electric Corp.
** Process Computer System Department, Mitsubishi Electric Corp.

85

86 T. MATSUURA & M. TOYAMA

3. Structure of BACS

BACS program consists of BACS compiler and many routines such as integra-
tion, transfer functions, diagnostics, resetting parameters and run control. The
structure program to be generated by BACS compiler for users is the subprogram
which represents the modeled structure of a block diagram, and can be connected
with any other programs. BACS compiler is a straight forward one-pass com-
piler which directly and only once translates each of all user-coded structure
statements into several machine language instructions, and therefore provides

the most economical performance.

Function Example structure BACS structure statement
Integral S %.— 8 5 1 =6 0.0
st 5 1 4
order 6 F T =4 1.53
-~ lag 1T+ 8T)
30
Summer 20 = (+) 20 ~ 30 = 45
Subtracter + 45)
o . R
T 10, _12 14 5 % 8 =10
Multiplier 3.14159 O 15 % 314150 = 14
e BT TS [
6 / 5 = 8
vial 6 8 136 1 20
Division —{ton or 135 / CON = 20
Dead time [~ 12 0 D -1 L
5 -
User-coded |8 FUNCT2 | 30 _ 12) = A B
function |_10 85

With _parameters A,B i

Besides, limiter, dead zone, hysteresis, logic functions, sine, exponential
square root, absolute value, quantizer, ramp.function, uniform random
number, etc. are contained in library. Algebraic functions are also
utilized as signal functions.

Table 1. BACS functions in library.

4. Input language

The BACS input program consists of three parts: (1) the structure program
which represents the modeled structure with functions in library illustrated in
table 1 and their connections of a block diagram, (2) numerical values assigned to
the parameters in a block diagram as the input data for each run, and, if necessary,
(3) user-coded functions freely defined in the form of FORTRAN subprogram.
A symbolic coding form with free format was chosen in BACS in order to reduce
the volume of a user program and to make its programming easy and to compile
it fast. In using BACS, control engineers transfer their block diagrams into the
representations with BACS functions by minor changes and call each function-
output variable by a number randomly named at their option, that is, a line
number in a block diagram, and write in free format BACS structure statements
describing the functional relationships among variables of a block diagram. For

BACS-A BLOCK DIAGRAM ORIENTED DIGITAL SIMULATION PROGRAM 87
example, an integral function
t
So Xis () dutK=Xn (2)

is written in BACS input form as follows :
15 I =20 K

5. Integration method
In BACS Runge-Kutta-Gill’s, modified predictor-corrector Hamming’s and
many other integration methods are available at user’s option. '

6. Output
BACS standard output routine prints or plots the numerical values of the

ccor

variables which are marked by the symbol or any alphabetic character respec-
tively at the head of output line numbers in structure statements. Furthermore,

there is BACS diagnostic routine for a user program.

7. User-coded algebraic function

BACS user-coded function is a FORTRAN subprogram for special purposes
in separate fields, in which all kinds of the FORTRAN statements can freely
used. The examples in the application of user-coded functions are (1) o generate
table functions, (2) zo calculate initial values, (3) o analyze output data, (4) to
perform run'control, (5) to define complex non-linear functions including implicit
functions, (6) to print specified solutions at any time, and (7) zo call other pro-
grams. In the simulation run including user-coded functions, only the additional
user-coded functions are processed by FORTRAN translator and BACS linkage-
editor. Other parts of a user program are compiled by BACS system only.

8. Successive runs

Successive runs are performed for many parameters such as gains, time con-
stants, initial conditions, etc in order to reduce turn-around time, or to find
automatically the optimized values of parameters in control systems, in a model
without recompilation by DATA or PROCON statements respectively.

9. Example 1 '

A simple example is provided by the study of a position control system
made up of a Ward-Leonard drive. Figure 1 and 2 show the block diagram of
the system and the BACS user program listing.

10. Example 2
The illustration of the pilot ejection system was used in the description of

MIDAS, MIMIC and CSMP [3], but it is also illustrated in this paper by reason

88 T. MATSUURA & M. TOYAMA

! |
1+055S 25

27

Fig. 1. Block diagram of Ward-Lonard drive system.

* EXAMPLE WARD-LEONARD SYSTEM STUDY
% SPEC. OF METHOD,STEP SIZE,PRINT

RUNGE 0.01 5.0 10.0 AUTOSCALE
* SPECIFICATION OF STRUCTURE PROGRAM

sTP = 2 0.0 1.0
2 - 27 = 4
4 % K=E 6
6 * 150,0 = 8
8 F 0.04 = 10 0.0
25 % 0.28 = 20
10 - 20 = 15
15 * 1,58 = 17
17 F 0.1 = A 22 0.0
22 F 0.5 =V 25 0.0
25 1 =T 27 0.0
END
DATA CASE 1
K 0,015
DATAEND

Fig. 2. BACS user program listing of Ward-Leonard drive system.

that it is a suitable study which compares with simulation languages. The pur-
pose of this simulation study is to ascertain whether a pilot ejected from an
aircraft will strike the vertical stabilizer of the aircraft or not. The pilot travels
along rails at a specified exit velocity, Vz at an angle, 0, backward from vertical.
The equations of motion are as follows :

X=Vecos (6)— Va4

Y=Y sin (6)

V=0 (Y<Y1)
6=0 (Y<Y1)
V=—~D|M~Gsin (§) (Y>Y1)
§=—G cos (6)]V (Y>Y1)

D=1/2 p (H) Cp SV?
where V (0)=((Va— Vesin (0))*+(Vz cos (0£)%)}
g (0)=tan™! (Vg cos (0)/(Va— Visin (0r))).

Our main concern is not to determine the ballistic trajectory of the pilot
itself for a large number of airplane velocity Va and altitude H conditions, but
to find the (V4, H) domain or envelope of safe ejection with the form of HZ= f(Va).
Figure 3 shows one of the block diagrams of the pilot ejection system equations.
The structure program and one of the user-coded functions program listing is
illustrated in figure 4. In FUNCS, the initial values VO and THO for V and TH
are calculated only once before each run. FUNCIO is the function which ascer-
tains whether the ballistic trajectory of the pilot has been safe or not and which

BACS-A BLOCK DIAGRAM ORIENTED DIGITAL SIMULATION PROGRAM 89

L v i1 1lv
22 L"§~J

FUNC8

6 B
R
Fig. 3. Block diagram of pilot ejection system.

* EXAMPLE PILOT EJECTION SYSTEM STuDY -
* SPECIFICATION OF METHOD, STEP SIZE , FINAL TIME ETC.
RUNGE oT FMT
% SPECIFICATION OF STRUCTURE PROGRAM
(5} = vo THO VA VE THE
16 COS = 10
10 * 12 = 6
6 -~ VA = 3
3 1 = 2 0.0
16 SIN = 14
14 * 12 = 8
8 1 = 4 0.0
12 % 12 = 30
30 % s = 32
32 * 0e5 = 35
35 * ch = 40
14 = G = 38
(8) = Yl M H RI HTR
22 1 = 12 Vo
20 1 = 16 THO
(10} = H VA FTM HIR
END
DATA

OT 0.2 FTM 3.0 M 7.0 G 32.0 YI 4.0
VE 40.0 THE 15,0 § 10.0 €D 1.0 H 0.0
VA 500.0 RI 1.0 HTR 1.0

PROCON

DEFINITION OF FUNC8 FOR VDOT , THEDOT
SUBROUTINE FUNCB(TIMEsXsY1sAgHsRIZHISTRY)
DIMENSION X(800),DATA(2,100)
IF(RI.GT.1.0) GO TO 30
READ(5,10) (DATA(1+1)yDATA(2,1),1=1,415)

10 FORMAT(6E12.4)
RI=2,0

30 IF(HISTRY.GT.1.0) GO TO 50
IF(X(4).GToY1} GO TO 50
X(221=0.0
X(20)=0.0
RETURN

50 X(22)=-X(40)*CURVE(H,DATA)/A-X(38)
X(20)=-X(42)/X(12)
HISTRY=2,0
RETURN
END

Fig. 4 BACS program listing of pilot ejection system.

resets new values to the parameters in order to find the safe conditions at only

one input trial and which terminates the runs.

11. Conclusion

The features of a simulation language BACS described in this paper are the
simplicity of usage, the flexibility in programming and the efficiency of the opera-
ting system including the compiler. Therefore, BACS appears to be suited and
practical for the simulation of control systems.

90 T. MATSUURA & M. TOYAMA

References
[11 Matsuura, T. and M. Toyama, Block Diagram Simulator with a Digital Computer, Journal
of Society of Analog Technique of Japan, 4, 6 (Aug. 1964),
[2] Takahashi, M., T. Matsuura, M. Toyama, and S. Hayashi, Block Diagram Simulator with
a Digital Computer, Fifth International Congress of AICA (Aug. 1967).
[3] Brennan. R. D. and M. Y. Silberberg, The System/360 Continuous Modeling Program,
Simulation, 11, 6 (Dec. 1968).

