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On Runge-Kutta Type Formulae with the
Error Estimating Ability

MASATSUGU TANAKA™

1. Preface

This paper is a continuation of our preceding thesis, “On the Kutta-Merson
Process and its allied Process.” ([1]) Now, we set the differential equation to
be the object of numerical solution as

L fla ), )=y (1)

Firstly, as to the case where f(z, ) is a function especially of x only, we make
such Runge-Kutta formulae with the error estimating ability as need to compute
functional values three to five times per step. As numerical integral formulae
with error estimating ability, these methods are applicable to the routine capable
of modifying pitches. In addition, in these cases we show the possibility of
making formulae with better efficiency if the function satisfies a certain condi-
tion. Secondly, as to the case where f(z,%) is a general function of two vari-
ables, z and y, we make just the same formulae as before. And on the study
of the same part, we remark that some coefficients of Kutta-Ceschino Process with
a significant figure of eight units have not sufficient accuracy. In derivating
formulae, R. Merson and F. Ceschino consumed the degrees of freedom of con-
ditional equations to simplify the process, while we use them to raise the
accuracy of integral formulae and their error estimate ([2], [3]). Our methods
are efficacious when f(z, ), the function of right hand side of (1.1), is compli-
cated.

2. The case where f(z,y) is a function of z only
2.1. Preparation

Here, the initial value problem (1.1) is
LW (), ylan)=v0 2.1)
In 2, we take up the Runge-Kutta formula able to estimate truncation errors

whose general expression is

Bi=hf(zoaih) i=1,2, e, m 2.2)
Yn+1=Yn+ .Eluiki (2 3)
yn+1,=yn’+ §}1 ﬂiki (m25, ’.Z/()/:?-/O) (2 4)
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T=yn+1—Yn+1 (2.5)
where a;, v; and g are constants, and also where ya+1 is a formula to obtain
numerical solutions, ¥a+i’ is a formula of higher accuracy, and their difference
T stands for the estimated value of the truncation error of w1

Theorem 1. Concerning to the Runge-Kutta formula (2. 4) that computes fun-
ction 7 times per step, if we name the highest order attained r, m<r.

The proof is easily made. Actually the formula of 2mth order is attained,
too.

Theorem 2. Concerning to the general formula (2.2) to (2.5) with m func-
tional computations per step, the following can be said.

(1) We can give the error-estimating ability to the (m-1)th order Runge-
Kutta method (2. 3).

(2) We can not give it to the mth order one (2.3).

In the above cases to make the error estimation possible, we need to have
the difference of at least one order between y»+1 and ya+1’. The proof is easily
made. Henceforward, p and g represent the orders each of yn+1 and yz+1/, which
are given respectively by (2.3) and (2.4).

2.2. The cases where c1=0. (See [4] for details)

(1) The cases of m=3.

Formula A-l: as=, ay=1, n=0, 5=1, 1=, fh=—, =%

2
4 5 1
Formula A-2: =z, 063:%7 U1:—§—, Uz=~8~, ,66122—16—4, ﬂzZ%, ﬂa=%~§:81
The former is the case when p=2 and ¢=3 and the latter is the one when
p=2 and ¢=4. v
(2) The case of m=4.
Formula A-3: 0&22711-, Q= 2 as=1, vlz»é—, ))22—%—, U3=%
1 4 4 1

ﬂ1=‘1§, #zzg, ﬂ3:§, KM:E

Formula A-4: a;=0.6, as=1.77, ay=4.277777778, v;=0. 1980539861,
» 1y=0. 7858499525, v,=0. 01609606129, x,=0. 2000350560,
t2=0. 7823640125, 113=0.01782904441, us= —0. 0002281128525
Formula A-5: a,=0.5, a;=0.1, a,=0. 8888888889, v2=0. 4642857143,
vs3=0. 2640845070, vs=0. 2716297787, p1= —0.02083333333,
12=0. 4523809524, st5=0. 2934272300, ¢4=0. 2750251509
The first Formula is the case of »=3 and ¢=4, and the second and the
third are those of p=3 and ¢=5. Especially in the latter two, the degrees of
freedom have been consumed to give the full ability of error estimation to the
formula y»+i with as high accuracy as possible.
(3) The case of m=5.



CN RUNGE-KUTTA TYPE FORMULAE WITH THE ERROR ESTIMATING ABILITY 11

Formula A-6: az=0. 8365878726, a;=0.3, a,=—0.5, as=—0. 85,
2,=0. 03692328692, v2=0. 4027789988, v;=0. 5539860393,
v;=0. 006311674997, 1;=0.01652856065, w.=0.4006292846,
1s=0.5686749535, u,=0.01793724026, us= —0. 003770039033
Formula A-7: a,;=0.8877551020, as=—0.2, a;=0.1, as=0.5,
b, =0. 2758872083, v3= —0. 004467077638, v,=0. 2752590674,
v5=0. 4533208020, ;= —0.03256704981, 1;=0. 2768673718,
#3==0. 001861282349, 1,=0. 3058434082, 15=0.4479949875
In all of the above formulae, where p=4 and ¢=6, the degrees of freedom
for the conditional equations have been consumed to raise the accuracy of
truncation error of y»+1 as high as possible so long as the accuracy of T is
not deteriorated.
2.3. The case where a1x0
yn+1' given by (2.4) is the formula obtained by applying Gauss-Legendre
quadrature formula that uses m function values to

Sz flz)dz 2.6)

while concerning to ya+: given by (2.3), we made a formula choosing the one
with the best accuracy of truncation error out of the possible combinations.
Then the order of ya+' is 2m.

(1) The case of m=3.

Formula B-1: a;=0.8872983346, a,=0. 1127016654, 043:—;—,

L=V —i = ~~5~ “ _j{
1 == o /11—/42—18, 3= 9

(2) The case of m=4.
Formula B-2: a;=0. 06943184420, a,=0. 3300094782, as=0. 9305681558,
ay=0. 6699905218, v;=0. 04519229241, v,=0. 6521451549,
p3=0. 3026625527, 11=0.1739274226, 1,=0. 3260725774,
us=0.1739274226, 14=0.3260725774
(3) The case of m=5.
Formula B-3: o;=0.04691007703, a2=0. 2307653449, a3=0. 7692346551,
a4=0. 9530899230, as=0.5, vy =0. 04083499337, v,=0. 4591650066,
v3=0. 4591650066, v,=0. 04083499337, x;=0. 1184634425,
t#2=0, 2393143352, (t3=0.2393143352, 14=0. 1184634425,
#s=0. 2844444444
Table 1 shows the true errors and the estimated truncation errors of the
numerical solutions y+1 obtained when the ordinary differential equation

W _ o 0)=
S=et, y0)=1 2.7)

is integrated one step from x=0.0 with the pitch of 0.1 using each of the
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formulae in 2, while Table 2 shows the similar ones with those of Table 1 when
the ordinary differential equation

dy_ 1o |
s v0)=0 (2.8)

is integrated one step from x=0.0 with the pitch of 0.1.

Table 1. The Numerical Solution of % =e?, y(0)=1.
method numerice;ll solution l(zi;ile error) 1(()el~)1r>1f'or estimate)
Formula A-1 1. 105127105 —43809 —43812
” A-2 1. 105205441 34523 34525
” A-3 1. 105170734 —184 —183
” A4 1.105171094 176 178
” A-5 1. 105170901 —17 —16
” A-6 1.105170917 -1 -1
” A-T 1.105170916 —2 -1
” B-1 1. 105205964 35048 35046
” B-2 1. 105169833 305 303
v B-3 1.105170914 -3 —4
Table 2. The Numerical Solution of v _ —wl—, 7(0)=0.
dx 1+z
method numerica;/ll solation 1(211?:13 error) ].(()egr>1<ror estimate)
Formula A-1 0. 09523809523 ‘ —72084 —72150
” A-2 0. 09537037036 60191 60222
” A-3 0. 09531102286 844 859
” A-4 0. 09530973639 —443 -505
o A-5 0. 09531025988 80 81
,/ A-6 0. 09531020165 22 22
” A-T 0. 09531017720 —2 —2.5
” B-1 0. 09536784745 57667 57667
// B-2 0. 09530874982 —1430 —1430
” B-3 0. 09531014657 —33 —33

Observing Tables 1 and 2, we see each of the formulae in the cases where
0130 has accuracy of remarkably high level in error estimation.
2.4. Remarks

When n:1 of (2.3), where s=m—1, and ya:1/ of (2.4) are each the (m—1)th
order method and the mth order one, and the estimated values of their trun-
cation errors are each T and Tast/, if the pitch is small enough and f“”(x)
does not change suddenly,



ON RUNGE-KUTTA TYPE FORMULAE WITH THE ERROR ESTIMATING ABILITY 13

N oM L _
hn+1{i§lfulat (m+1)}(Tn+1 Ty)

Tn—(—l/ ~ —1 1 (2' 9)
mhn( » Di(){,’m"l——)
i=1 m
where /. is the pitch at the nth step.
3. The Case where f(z,y) is the General Function of z,y (See [47)
3.1. Preparation
The general form of the formula is
i—1
kizhf(xn+aih, Ynt Zlﬂijkj) (i:1,2} """ , 771,) (3 l)
i=
Yn+1 :?/nﬂL‘ ~Z}1Diki (3 2)
Yn+i! =Yn+ ';Elﬂiki (m>s) (3.3)
T=yns1—Yn+ (3.4)

where a;, fi;, v; and ; are constants and especially ai=810=0 and a1 is a
formula to obtain the numerical solution while y»+1’ is a formula with higher
accuracy than y.+1 and is necessary to obtain the estimated value of the trunc-
ation error of ys«i. In 3, we use the criteria defined in [1] to measure the
accuracy of the truncation error of the formula.

(1) The case of m=4.

Theorem 3. It's impossible to give the error estimating ability to a third
order Runge-Kutta method by means of four functional computations per step.
The proof is easily made. Consuming two degrees of freedom conditional
equations have so as to make y.+1 a second order method have the highest
accuracy possible, we obtain the following formula for which p=2 and ¢=4.

Formula C-1: as=—0.4, a;=0.425, ay=1, Ba=—0.4,
B31=0. 6684895833, fs2= —0. 2434895833,
Ba1= —2. 323685857, fsz=1. 125483559,
Bis=2.198202298, v,=0. 03968253968,
p3=0. 7729468599, v4=0. 18737060041,
(1=0. 03431372549, 115=0. 02705627706,
#3=0. 7440130202, u4=0. 1946169772

(2) The case of m=5.

Theorem 4. It's impossible to give the error estimating ability to a fourth
order method by means of five functional computations per step.

Proof. It is because the fifth order method can’t be made by five functional
computations ([5]).

Formula C-2 has been made so as to make y.+1' be almost a fifth order
method and to make y»+1 have the highest accuracy attainable so long as the
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accuracy of T is not deteriorated.
Formula C-2: a»=0.0005, a;=0.285, as;=0.992, as=1.0,
B21=0. 0005, B3:= —80.89939470, fB3;=281. 18439470,
B41=2113. 327899, Biz= —2117. 778035, Bss=5.442136522,
Bs1=2249. 757677, Bsa= —2254. 489040, Bs3="5. 739991965,
Bss=—0. 008629230728, ;= —131. 2823524, v,=131.4998223,
v3=0. 4837620276, v,=0. 2987680554, (1 ="065. 80784286,
ta= —65, 94767173, ps=0.7959885276, 1s=4.715404915,
pts= —4. 371564570 _
Table 3 shows the numerical solutions, true errors and estimated errors of
the ordinary differential equation

ay _ S )= =
dz 1tz ¥(0)=1 (3.5)

which is integreted one step from z=2.0 with the pitch of 0.1 using each
Formula C-1, C-2 and Kutta-Ceschino process.

Table 3. The Numerical Solution of di:ﬂ/—, y(0)=1.
dx 14z
. . 105X 108
method numerlcazl/lsolutlon (true error) (error estimate) T/TE
X T
Formula C-1 1. 610011268 —498.7 —445.6 0.89
Formula C-2 1. 610923240 415.2 4922.9 1.02
Kutta-Ceschino Process 1. 610932634 422.6 463.7 1.10

Both of Formula C-2 and Kutta-Ceschino Process make five computations
of function, but the former needs the procedure of making a formula to obtain
the numerical solution while the latter doesn’t. In compensation for it, however,
the former gets the higher accuracy of s+’ and accordingly of the estimated
value. Table 3 proves together with the table in [4], which shows the criteria
of the truncation errors of Formula C-1, C-2 and Kutta-Ceschino Process in
yas1 and yn+i/, that the above fact is correct. (See [4])

3.3. Kutta-Ceschino Process ([2]) ’

Through the detailed investigations of the case where m=5 in Kutta-Ceschino '
Process, we see the method by F. Ceschino is almost the best and the improve-
ment seems to be nealy impossible. Though his coefficients with the significant
figure of eight units sometimes makes errors in the last three units and doesn’t
seem to have sufficient accuracy, it has little effect in general and therefore
counts for nothing. (See [4] for details)

4. Acknowledgement
We express here our sincere gratitude to Professor Sigeiti Moriguti, Univer-
sity of Tokyo, for his helpful suggestions.



ON RUNGE-KUTTA TYPE FORMULAE WITH THE ERROR ESTIMATING ABILITY 15

References

[1] Tanaka, M. Kutta-Merson Process and its allied processes, Information Processing in
Japan, 8, (1968).

[2] Ceschino, F., Evalution de 'erreur par pas les problemes différentiels, Chiffres, 5 (1962).

[31 Merson, R.H., An operational method for study of integration process, Proceedings of
Symposium on Data processing, Weapon Research Establishment, Salisbury, South
Australia (1957).

[47 Tanaka, M., On Runge-Kutta Type Formulas with Error Estimating Ability, Joho Shori
(The Journal of the Information Processing Society of Japan) 9, 5 (1968), 261-271.

[5] Ceschino F. et J. Kuntzmann, Méthode Numériques Problemes Différentiels de Condi-
tions Initiales, Dunod, Paris (1963), 89-91.



