Information Processing in Japan : Vol.10, 1970
SPM—A Pseudo Machine for String Processing

Kivosai Asat*, Yasuo Inamr* AND Naoyuxki Sairo*

Recently much of technical information is being exchanged or disseminated
in the form of computer programs. For engineering computation, most of com-
puter programs are written in FORTRAN languages. The FORTRAN has, how-
ever, many dialects and, for this reason, it is an important problem to convert
FORTRAN dialects into the standard FORTRAN or to convert a dialect into an
another dialect.

Features of a conversion program are basically concentrated as follows;

(1) versatile features to process strings,

(2) efficient set-theoretic operations for sets of strings.

The conversion program SPM is a general purpose program which executes
the above mentioned features efficiently. - '

1. Introduction

Many computer programs have been developed to rewrite a FORTRAN
language to another FORTRAN dialect [1]. These programs are called conver-
sion programs. The each method used in the conversion programs has its own
merits and demerits. We can say that common demerits of the methods are
lack of feasibility and efficiency, because these methods are too rigid and cannot
apply to an appropriate procedure according to complexity of problems. We can,
however, solve the problem by using a symbel manipulation language specially
designed for string processing. By the word string we mean a string of charac-
ters. We may classify basic functions to convert a FORTRAN program as follows ;

(1) arithmetic operations on integers,

(2) set-theoretic operations on sets of strings,

(3) dynamic labels which we can define or refer dynamically,

(4) operations on variable length strings,

(5) quick access to strings,

(6) efficient recognition of characters,

(7) quick branching operations by characters,

(8) indirect addressing by characters.

We must moreover add following three functions if we want to realize these
functions on a computer program ;

This paper first appeared in Joho-Shori (the Journal of the Information Processing Society
of Japan), Vol. 11, No. 1 (1970), pp. 11-19.
* Japan Atomic Energy Research Institute, Tokaimura, Ibarakiken.

44



SPM—A PSEUDO MACHINE FOR STRING PROCESSING 45

(9) input/output operations on variable length strings,

(10) easy programming as a symbol manipulation language,

(11) compatibility between computers.

The SPM is a FORTRAN written pseudo machine which aims to meet the
above mentioned functions [2].

2. SPM

The SPM is a pseudo machine with two-address instructions. The address
is given to each string. The two-address method is adopted since the string

processing in general consists of operations such as string comparison, copy,
retrieval and transfer on two strings.

The SPM operation is represented in the form
OPC ADR, BDR, VAR
where OPC, ADR, BDR and VAR mean operation code, A-address, B-address and
variant respectively.
2.1 Registers

(1) IC: Instruction counter

This register contains the address of the current SPM instruction.

(2) ADR: A-address register ‘

This register contains an address of a string specified by A-address part of
an instruction. When a dynamic label or an indirect address is specified in the
A-address part, the address decoder analyzes the specification and put a true
string address into the ADR.

(3) BDR: B-address register v

This register contains an address of a string specified by the B-address part
of an instruction. Its operation is similar to the ADR.

(4) VAR: Variant register

This register contains a character which is used as a string boundary of
transfer operation or an object of a comparison.

(5) APR: A-address character pointer register

Strings specified by the address parts of an instruction are processed char-
acter by character by the SPM. The APR contains the next character position
of A-address at that place the processing has just finished. '

(6) BPR: B-address character pointer register

This register is similar to the APR.

(7) IND: Indicator register

This register contains a numerical value which is set by a result of an
instruction execution.

2.2 Labels

There are two classes of strings in the SPM operations. The one is a set of



46 K. ASAT Y. INAMI & N. SAITO

strings defined before the SPM instruction execution and the other is a set of
strings that are generated in the process of the SPM instruction execution.
Labels for the former strings are celled static labels and labels for the latter
strings are called dynamic labels.

Variables used in the SPM arithmetic operations are also assumed as strings
with numeric values and the variable names are treated as labels.

These labels are the numeric labels. We can also give static labels to the
SPM instructions. These labels are the instruction labels and are mainly used
for branching addresses. :

Thus we can classify the labels as Fig. 1.

String labels
Static labels {Instruction labels

Numeric labels
String labels
Numeric labels

Labels {
Dynamic labels {

Fig. 1. Labels

2.3 Label Representations

(1) A static label is defined by a string of up to four characters. The
string may be composed of 0,1, ,9 A, B, C, - , Z and special characters
(excluding (,), ., ¥, comma and blank).

(2) A dynamic label is defined by two static labels and a period between
the two labels. The latter label must be a numeric label.

(3) The above two labels can bave one dimensional subscripts (except the
numeric label and the instruction label) to specify the character positions in
the strings. '

(4) The SPM accepts indirect addresses of one depth.

(5) In case of a datum transfer to a string of dynamic label, the length of
the string is extended automatically according to the datum length. In case of
a datum transfer to a string of static label, the length of the string is not
extended automatically (except in RCS and CAT operations) and the transfer
finishes at the boundary of the datum or the string.

(6) Thus labels and their addressing methods are classified as Fig. 2.

Simple addressing |Subscript addressing| Indirect addressing

Numerical label YES NO YES

Instruction label YES NO . NO
String label 'YES YES YES

Fig. 2. Labels and their addressing methods.



SPM—A PSEUDO MACHINE FOR STRING PROCESSING 47

(7) Examples of label definitions
(a) Simple direct and indirect addressings KOKO, (KOKO)

MCM KOKO, WORK, " ("

MCM (KOKO), SPAC
KOKO DS. YREAD ("
WORK DS Y #4448 INPUT 4 TAPE Y
SPAC DS v igidd OUTPUT ¢ TAPEY
READ DS YWRITE"
Note: A # means a blank.

Fig. 3.

After the execution of the first MCM instruction in the above example, the
contents of the string KOKO is transferred to WORK and as the result, the
WORK contains a string READ INPUT TAPE. After the execution of the second
MCM instruction, the contents of the string READ is transferred to SPAC and
as the result, the SPAC contains a string WRITE OUTPUT TAPE.

(b) Direct and indirect addressing with subscripts KOKO(P), (KOKO(P))

ADD ONE, P

MCM KOKO (P), WORK, " ("

MCM (KOKO(P)), SPAC
KOKO DS YREAD ("
WORK DS v 444kt INPUT 4 TAPE Y
SPAC DS v ik QUTPUT ¢ TAPE "
READ DS YWRITE"
P DC 0
ONE DC 1

Fig. 4.

In the above example, all results are same as the example (a)’s.
(¢) Dynamic direct and dynamic indirect addressing A.P, (A.P)

A. SIZE 100
ADD ONE, P
MCM KOKO, AP, " ("
MCM (A.P), SPAC
KOKO DS *READ ("
WORK DS " gt INPUT ¢ TAPE ¥
SPAC DS Y 44444k OUTPUT ¢ TAPE "
READ DS T WRITE '
P DC 0
ONE DC 1

Fig. 5.



8 K. ASAL Y. INAMI & N. SAITO

After the execution of two MCM instructions in the above example, the
SPAC contains a string WRITE OUTPUT TAPE.
(d) Dynamic direct and indirect with subscripts addressing A.P(Q), (A.P(Q))

A SIZE 100
ADD ONE, P
ADD ONE, Q
MGM  KOKO, AP(Q), ' ("
MCM (AP(Q)), SPAC
KOKO DS "READ ("
WORK DS Y 44k INPUT & TAPE Y
SPAC DS Y b4kt OUTPUT £ TAPE "
READ DS Y WRITE ¥
P DC 0
ONE DC 1
Q DC 0
Fig. 6.

In the above example, all results are same as the (c)’s.
2.4 Instructions

The SPM can allow the address chaining specification. Some instructions
must have labels with or without subscripts. When labels are not specified
explicitly for these instructions, the contents of previous ADR, BDR, APR and
BPR registers will be used if necessary. The address chaining of the variant
register is not allowed. All instructions of the SPM are shown in the Table 1.
The Table 2 shows the indicator status after the instruction execution.

Let us give explanation about some instructions to make the SPM functions
clear.

CS: Compare strings
| CS  ADR, BDR |

cs  ADR|

s

In this instruction the ADR and BDR labels are assumed to be string labels.
These labels may have subscripts and if subscripts are not specified explicitly,
they are assumed to be 1's. The SPM compares ADR and BDR strings from
the character positions specified by subscripts. The SPM finishes the operation
CS if the two strings are equal or all characters of one of the two strings are

used or unequal characters are found in that comparison. If the two strings

are equal, the value of indicator is set to 5 and it is set to 6 otherwise. The



SPM—A PSEUDO MACHINE FOR STRING PROCESSING

Table 1. The instructions of SPM.

Instructions Arithmetic Control
ADD Add ADR to BDR
SUB Subtract ADR from BDR
ZADD Zero and add to BDR
ZSUB Zero and subtract from BDR
MPY Multiply ADR and BDR
DIV Divide BDR by ADR
AND And ADR to BDR
OR Or ADR to BDR
COMPL Store complement of ADR in BDR
Logical Control
CS Compare strings
CN Compare numbers
BCE Branch if character equal
BCT Branch on condition test
BRA Branch unconditional
NoOpP No operation
Data Control
CNVRT Convert string to binary or binary to string
MCM Move characters to mark or string boundary
MAC Move a character
MCS Move characters and suppress variant
SAR Store A address register
SBR Store B address register
SAP Store A address character pointer
SBP Store B address character pointer
STI Store indicator
SRCH Search a string ignoring variant
RCS Replace a character by a string
ERASE Erase a string
CAT Catenate ADR and BDR setting variant
LEN Get length of ADR string
LDA Load A to ADR
MOD Get absolute modulo of BDR
LAST Get remaining available storage size
TON Trace on
TOFF Trace off
System Control
REWIND Rewind a unit
READ Read a string
PUNCH Punch a string
PRINT Print a string
WRITE Write a string
EXIT Exit from SPM control
Processor Control
DS Define string
ETC Extend card for DS operation
DC Define constant
SIZE Define max size of dynamic label

END

End of SPM instructions

49



50 K. ASAL, Y. INAMI & N. SAITO

Table 2. The indicator status of SPM.

Indicator Status Explanation
1 [ADRI<[BDR] in CN operation
2 [ADR]=[BDR] in CN operation
3 [ADR]>[BDR] in CN operation
5 [ADR]=[BDR] in CS operation
6 [ADRI3[BDR] in CS operation
10 A subscript greater than BDR string length specified in BCE operation
12 String boundary of ADR is reached in MCM operation
13 Static string boundary of BDR is reached in MCM operation
15 String boundary of ADR is reached in MAG operation
16 Static string boundary of BDR is reached in MAC operation
18 String boundary of ADR is reached in MCS operation
19 Static string boundary of BDR is reached in MCS operation
21 TADR]=[BDR] in SRCH operation
22 [ADR]*[BDR] in SRCH operation
26 A subscript greater than ADR string length specified in CAT operation
31 A subscript greater than ADR string length specified in CNVRT oper.
32 A subscript greater than BDR string length specified in CNVRT oper.
33 String boundary of BDR is reached before all of ADR binary numbers are

not converted in CNVRT operation
34 First character is not a number in characters to a number CNVRT oper.

Note: [ADR] means the contents of ADR string.

APR and BPR point to next character positions the comparison finished.
BCT: Branch on condition test

BCT ADR, BDR “

In this instruction, the ADR must be an instruction label and the BDR must
be a number. In the BCT instruction execution, the number specified by the
BDR is compared with the contents of the indicator. When they are equal, the
SPM transfers control to the address specified in the ADR. When they are not
equal or no static label indirectly addressed by the ADR exists, the SPM trans-
fers control to next instruction of the BCT. After execution of the BCT
instruction, the value of the indicator is set to zero.

CNVRT: Convert string to binary integer or binary integer to string

| CNVRT  ADR, BDR, V

This instruction is used to convert a character sti‘ing to a positive integer
or a positive integer to a character string. If a number 1 is specified in the
variant part, a string specified by the ADR is converted to an integer and the
integer becomes the content of the numeric label specified by the BDR. If 2
is specified in the variant part, content of a numeric label specified by the ADR
is converted to a character string and the string is embedded in a position of



SPM—-A PSEUDO MACHINE FOR STRING PROCESSING 51

the string specified by the BDR.
MCM: Move characters to mark or string boundary

MCM  ADR, BDR, V |

[ MCM  ADR, BDR |

| MCM  ADR |

| Mo |

This instruction is used to transfer a string specified by the ADR into a
string specified by the BDR. If a variant is specified, the transfer finishes when
the SPM has found a same character as the variant in the ADR string. The
character itself is not transferred to, but the APR contains its position. If the
match of a ADR character and the variant is unsuccessful or no variant is
specified, the transfer finishes at the boundary of the ADR or BDR string.

SAR: Store A-address register

SAR ADR

This instruction is used to store the contents of the A-address register of
the previous instruction into a numerical label specified by the ADR. This in-
struction is usually used to store a return address when a branching instruction
is executed.

SAP: Store A-address character position

|SAP  ADR |
This instruction is used to store the contents of the A-address character

pointer register APR into a numeric label specified by the ADR.
SRCH: Search a string ignoring variant

| SRCH  ADR, BDR, V |

‘ SRCH _ ADR, BDR |

’ SRCH ADR {

| SRCH \

This instruction is used to find a string specified by the BDR from a string
specified by the ADR. If no variant is specified, no character of the ADR is
ignored in the search operation. Characters of the ADR string are compared
with characters of the BDR string one by one. The SPM stops the comparison
when unequal characters are found and it sets an appropriate value in the

indicator.

ERASE: Erase a string



52 K. ASAL Y. INAMI & N. SAITO

ERASE  ADR ‘

This instruction is used to erase unnecessary strings of dynamic labels. The
erased memories are linked to the free storage space for later use.
MOD: Absolute modulo of BDR

FMOD ADR, BDR, V |

MOD  ADR, BDR \

By the execution of this instruction, one or two FORTRAN words of a string
specified by the ADR are divided by a numeric value specified by the BDR.
The absolute value of the residue is stored in the numeric string of the BDR.
If 1 specified in the variant, one FORTRAN word of the ADR string is divided
and if 2 is specified in the variant, two FORTRAN words are divided by the
numeric value of the BDR. If no variant is specified, the string of the ADR is
also assumed as of a numeric label and the division occurs. Using dynamic
labels and this instruction, one can utilize the scatter storage techniques to
store and retrieve strings [31, [4].

TON: Trace on

]TON]

This instruction is used to print out the contents of 26 registers of the
SPM. For each instruction execution, the SPM print out the 26 registers and
it continues the print until it executes a TOFF (Trace off) instruction.

READ: Read a string

|READ  ADR, BDR, V |

| READ  ADR, BDR l

This instruction is used to read,from an unit V, characters of specified length
by the BDR into a string of the ADR. The unit number V is corresponding to
the FORTRAN logical unit number from 1 to 12. No variant specification means
that the V is the system input unit.

3. Experience with the SPM

Several conversion programs are written using the SPM to convert programs
of FORTRAN T to these of FORTRAN IV. In the execution of the conversion
programs, it has been observed that they are 2 to 5 times faster than the other
previous conversion programs. The SPM conversion programs of the IBM 7090
or 7044 computer can convert FORTRAN Il programs of 600-900 statements in
one minute.

The SPM itself consists of 4000 FORTRAN IV statements (excluding comment



SPM—A PSEUDO MACHINE FOR STRING PROCESSING 53

cards) and it requires 20 K FORTRAN words to load into the main memory. It
can accept EBCDIC or BCD character code system and by changing a code
table it will accept any type of code system. The code system and number of
- bytes in a FORTRAN word can be speciﬁéd on the SPM control card.

The SPM is tested by the IBM 7044, IBM SYSTEM 360/75, GE 635 and its
latest version is now under operation on the FACOM 230-60 computer at the

JAERI computing center.

References

[1] Asai, K., Problems on FORTRAN Conversion Programs, Joho-Shori (The Journal of the
Information Processing Society of Japan), 10, 4, 235-239. (in Japanese)

[2] Asai, K, N. Saito and Y. Inami, The SPM—A FORTRAN Program for Siring Processing,
JAERI memo 3595, Japan Atomic Research Institute, (June, 1969)

[3] Maurer, W.D., An Improved Hash Code for Scatter Storage, The Comm. of the ACM,
(Jan., 1968), 35-38.

[4] Morris, R., Scatter Storage Techniques, The Comm. of the ACM, (Jan., 1968), 38-44.



