Information Processing in Japan Vol, 10, 1970

On the Compilers described in COL
Hirosai Haciwara* AND KATUMASA WATANABE*

In order to get compilers in short period easily, we have proposed to write
compilers in Compiler Oriented Language (COL).

In this paper, it is discussed what class of programming languages can be
accepted by the compiler described in COL, and some experimental results and
several important points on describing compilers are reported. Through the
experiments it may be said that compilers described in COL can accept ALGOL
programs satisfactorily, but that it takes much compiling time than handcoded

one.

1. Three languages specifying a compiler

In this paper, an attempt based on any method to make compilers as readily
as possible with a computer is extensively called a Compiler Compiler. Then,
from the view point of the Compiler Compiler, a compiler can be specified with
three languages, input language L1. output language L2, and the third language
L0 in which the compiler is described. We denote it CE?_)LZ.

We can classify Compiler Compilers at the point of each one of these three
languages.
a. To construct a compiler describing language L0, and to write compilers in
it. ALGOL and PL/1 can be an example of LO. Generally L0 is refined suitably
to describe the compiling process.
b. To define the input language L1 formally and to find a simple compiling
method. The study of LR(%) grammar and the automaton model of a compiler
is of this type.
c. To consider the output language L2, and to research the better computer
language and computer itself. Universal Language, and the correspondence
between ALGOL and A-notation is of this class.

The compiler describing languagé COL, which we have proposed previou-
sly [1], is constructed at the view point of a. With it, we try to produce com-
pilers readily and attempt to find the necessary feature of the computers which

accept the higher-level programming language directly.

2. Consideration of the Input Language
2.1. Class of Input Languages

This paper first appeared in Japanese in Joho-Shori (the Journal of the Information Pro-
cessing Society of Japan), Vol. 10, No. 6 (1969), pp. 375-383.
* I aculty of Engineering, Kyoto University.

23

24 H. HAGIWARA & K. WATANABE

In this paper, the input language is considered being defined with a context-

free phrase structure grammar G
G=(V, 2, P, o)

V is a finite set of symbols and called vocaburary. Y is a finite set of terminal
symbols and called alphabet. P is a set of rewriting rules

: A > XX g vereeenens Xom
here X;€V, and AeN(=V—2Y i.e, a finite set of nonterminal symbols). ¢ is an
element of N and called initial symbol. P has to be redefined to write the
parsing process effectively in COL, especially according to the following two
points.
1) Left recursive rule is reformed into repetitive form. For example, {A—Ab,
A-a} are combined to A—a*{b}, where *{ } means that the elements in { } can
appear any times repeatedly.
2) Some rules which have same left substring are reformed into factoring form
‘to avoid unfruitful parsing process. For example, {A—»aBC, A->aBd, A->ae} are
combined to A—a{B{C|d}|e}.

With respect to Knuth’s LR(%) grammar [27], COL has the following feature:

Lemma 1. The procedure to parse the string generated by LR(k) grammar
is able to be described in COL.

Next, from the view point of the automaton model, the compiler described
in COL C%" is considered as a combined automaton of a pushdown automa-
ton Al to perform the syntactic analysis and a stack automaton A2 to perform
the translation into the output string. So according to Ginsburg’s automaton
theorem [3], the following is said: ‘

Lemma 2. The compiler described in COL C® can accept the context-free
language (CF-language).

Practically, when Al performs the syntactic analysis incompletely, A2 may
make up for the incompleteness with describing the translating process in detail.
So it may be said that C®" accept the class of languages including CF-language.
For example, ALGOL is not a CF-language, but its program is accepted by C.
2.2. Description of Semantics '

For the purpose of describing semantics (or meaning) of the input language
L1 as formally as possible, we would consider the way of representing the
semantic interpretation procedure in COL. We assume, “Semantics is the speci-
fication how some (abstract or concrete) machine acts on”. So, the problem of
describing the semantics of L1 is reduced to the problem of defining the seman-
tics of a simpler language and of relating the semantics of them. That is, we
have following two problems,

1. Define an object machine and its basic action.

2. Establish the procedure making correspondence between string of L1 and

ON THE COMPILERS DESCRIBED IN COL 25

the sequence of basic actions.

In COL, we choose one of the current computers as an object machine and
its machine instruction {or its symbolic code) as a set of basic actions, and
concentrate our effort on the procedure to make the correspondence between
L1 and these basic actions. To specify the procedure formally and systemati-
cally as possible, input string is first transformed into M-structure as a result
of syntactic analysis. M-structure gives the standared form of the input string.
Its structure and elements are arbitrary defined by the compiler builder, but it
is better that M-structure has community in form for various input languages.
For example, the input string of {expression) is transformed into the M-structure
equivalent to reverse polish form. The process making correspondence between
M-structure and output strings is represented in Semantic Statement. The
semantic feature of language is reflected on this process. For example, (condi-
tional statement)

a. if (Boolean expression) then Sl else S2;

b. if (Boolean expression) then S3;

is transformed into the following M-structure, respectively ;

a’. [IF] BE [BL][THEN]/S1 [ELSE]/S2 [CONE]/

b’. [1IF] BE [BL][THEN]/S3 [CONE]/.

Here, BE, S1, S2 and S3 mean the M-structure of Boolean expression and
statements S1, S2, S3 respectively.

In each M-structure, the name in a bracket is the name of a M-routine and
" represents the context of the input string. Each M-routine is described in the
following Semantic Statement.

(1) left=right means that the value of the right part is assigned to the variable
in the left part.

(2) <equal condition) statement is a conditional statement and the specified
statement is executed when the condition in ¢) is satisfied.

(3) [M-routine name] treats the specified M-routine name as a subroutine entry.

(4) |/ denotes the end of a M-routine or a subroutine.

(5) (—H) means that the contents of the specified register H is decreased by
unit value. Here, H is one of the registers pointing to the cell of M-
structure.

(6) The letter ‘E’ denotes the calling on the predetermined error processing
routine, and EBL is the statement to call this routine and to print the
error massage ‘BL’ in compiling time.

(7) LINK (a, B) denotes that the contents of the specified register § is inserted
into the address part of the object code which is stored in the location a.

(8) RESERVE, RESTORE, REWRITE, and LOSE manipulate the pushdown
storage m or j. '

26 H. HAGIWARA & K. WATANABE

(9) [“symbolic code”, a list of operands] represents the object instruction
code to be generated in compiling time.
Following M-routines make a’ and b’ correspond with the output string a'/
and b'/.
IF: RESERVE (m)/;
THEN: RESERVE (j); [“JUMP ON ZERO” 0, (H)];
(— H); REWRITE (m)/;
ELSE: [TAK]J];
RESERVE (j); [“JUMP” 0];
LINK (w3, j); REWRITE (m)/;
CONE: [TAK]];
LINK (w3, j); LOSE (m)/;
TAK]: Q=j; RESTORE (j); w3=j; j=Q/;

BL: w2=(H); (—H); {(w2=3)/; EBL/;
a'l, m: =result of (Boolean expression);
[JUMP ON ZERO L1, m 1;
S1
[JUMP L2 1;
L1: S2
L2:
b'’. m: =result of (Boolean expression);
[JUMP ON ZERO L3, m 1;
S3
L3:

3. Generation of Compilers
3.1 COL Processor
Experiments of compiler generation were done on the computer system
FACOM 230-10 (Core 8K byte, Drum 65K byte), referred as MI10 in the rest of
this paper.
It begins with producing COL Processor for M10. COL Processor C?:%i—»mo
consists of Syntax Loader and Semantics Loader, and transforms C into C¥°,
Syntax Loader transforms a Syntax Statement
SNAME: (READ & TEST) ? (T. Action) £ (F. Action);
into the appropriate M10 instruction sequence corresponding to
SNAME: (READ & TEST)
if TEST then {T. Action) else {F. Action)
here TEST is a Boolean variable in compiling time. Semantics Loader accepts
a Semantic Statement and generates the corresponding sequence of MIO inst-
ructions. Usually some basic operations for compilers (for exmple, stack mani-

pulation operations, identifier editing) are prepared as Compiling-time Subrou-

ON THE COMPILERS DESCRIBED IN COL 27

tines for each compiling machine, and a subroutine call instruction with some
arguments is generated instead of complete sequence of instructions. These
Compiling-time Subroutines realize the function of compiler in software.
3.2 Comparison of Compiling-time

Four compilers, which accept ALGOL or subset of it, are described in COL
and generated by its processor. The compiling speed of these four are com-
pared with that of handcoded ones for MI10, M10-ALGOL and M10-FORTRAN.
Table 1 gives relative compiling time (ratio for M10-FORTRAN) of several pro-
grams and the real compiling time for the following program.

begin real =x,a,6,c,d,e, £, 9, p,q,7;

>

Ll: z:=a+b+c+d+e+ f4g+ptqgtr;

L2: z:=atbtctdret f1glpral7;

L3: z:=(a)+@)+(c)+(d)+(e)+(f)+(@)+(£)+H(a)+(r);

Lo: zi=(atBr(ct ot (gtr));

L5: zi=(((@Bt o)t kgt

end
Table 1. Comparison of the Compiling Time.
(sec)
%‘A(%(I)R—TR AN | M10-ALGOL | Compiler I | Compiler i Compiler IIT | Compiler IV

1 0.8~0.9 1.5~2 2~3 (50%) 4~6 (50%) 3~4
L1 7.0 6.0 16.0 22.0(8.0) | 45.0(23.5) 310
1.2 9.0 10.5 12.5 18.5(5.3) | 30.0(9.0) 52.0
L3 12.0 8.5 24.0 37.0(23.5) | 78.0(58.0) 45.0
L4 11.5 8.5 23.5 32.0(22.5) | 72.0(54.5) 39.5
L5 11.5 8.5 23.5 35.5(22.5) | 75.5(54.5) 44.5

total 55.0 52.0 105.0 151.0 (83.5) | 308.0 (201.0) 221. 0

The characteristics of the generated compilers are as follows:

Compiler I: accepts a program which contains a declaration of simple variables
and the sequence of simple assignment statements between begin and end, and
generates the sequence of 3-address symbolic codes. For example, z:=a-+b is
converted to .

ADD ma, ms, t;

STO ¢ me
where ma, 7, mz is the allocated address of a, b, z and ¢ is the location of
temporary storage. :
Compiler IT: accepts a subset of M10-ALGOL and generates 3-address symbolic
code. ‘
Compiler III: accept ALGOL program (with some restrictions and modifications)
and generates 3-address symbolic code.

28 H. HAGIWARA & XK. WATANABE

Compiler IV: accepts a subset of M10-ALGOL (same as Compiler II) and gene-
rates the sequence of machine instructions for another computer NEAC 2101.
In Table 1, the time in the parenthesis is the parsing time. It depends on
the length of the path from the root to the leaf of the tree and the order of
the rules referred, and it occupies about 50% of whole time in average. The

(arithmetic expression) which has deeper tree structure takes much parsing

time, and the block structure which requires processing of identifiers takes much

time in translating.
The following are the main reasons why compilers described in COL take
much compiling time than handcoded ones.

(i) Because of the parsing phase based on the syntax directed analysis, times
of rereading input symbols and of manipulating pushdown storages increase
in number as a result of trial and error.

(ii) To describe the compiling process simply, parsing phase is completely
séparated from translating phase and M-structure combines them. So
redundant operations increase.

(ili) Because of 2-level storage (Core, Drum) of MI0, generated compilers are
segmented in pages (one page is 2K byte). As a compiler is bigger, much
time are required to exchange pages of compiler. Moreover, exchanging
of pages of automatically segmented compiler is more frequent than that
of handcoded one.

3.3 Compiler II1

To write Compiler III CiCLH(“;OL_)SymbOHC’ i W€ assume some restrictions and

modifications on ALGOL. .

1. Following concepts are deleted -from ALGOL 60: program comment, own,

unsigned integer label, formal parameter label called by value. Without label

called by value, all {designational expression) can be dealt with as go to {(desig-
national expression).

2. The specifications of formal parameters are given in {formal parameter list).

For example,

procedure P (z, 7, 2, a); value z; real =z, y, =; array a;
is written as
procedure P (value real z; real y, z; array a);

3. To get the correct attribute of an identifier when it is referred, declarations

are given in the following order.

type or array/switch or procedure

4, As an {actual parameter), {(statement) is permitted. Corresponding formal

parameter has the specification procedure. Hence, <label) can be deleted from

{formal parameter). For example,

procedure P (label M); begin - ; go to M- end ;

ON THE COMPILERS DESCRIBED IN COL 29

is written as
procedure P (procedure Q); begin ----- Qg end ;
...... P (go to L),

4. Conclusion

As a result it may be said that the compiler described in COL, compared
with handcoded one, is described more easily and produced in shorter period,
but takes longer time for compiling. Then, we have the following problems in
future.
(1) It takes much time to analyse the input string whose syntactic tree struc-
ture has deeper node such as (expression). So, COL is required to have the
flexibility to write compilers which parse the input string in some deterministic
method depending on operator precedence or LR (k) parsing.
(2) To write translating phase more simply and systematically, it should be
required to establish the formal definition of the semantics of languages.

Reference
[1] Hagiwara, H. and K. Watanabe, Compiler Describing Language: COL; Information
processing in Japan, 9 (1969), 96-102.
[2] Knuth, D.E, on the translation of language from left to right; Inf & Control. 8 (Oct.
1965), 607-639. :
[3]1 Ginsburg, S. and S. A. Greibach, Stack Automaton and Compiling, J. ACM, 14 (Jan. 1967),
172-201.

