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Quadrature Formulas with the Error
Estimating Ability

MASATSUGU TANAKA*

1. Preface

In this paper, we study some of those formulas of a Runge-Kutta type which
have the error estimating ability and which are to solve the ordinary differential
equations;

V=Ff(z), wzd=uwo (1)

Their application to numerical integration is also investigated. Here we assume
it possible for f(z) to be differentiated to the required order.

The general expression of the formulas with the ability of error estimation
is

ki:hf(xn‘l“aih) (7’1“-:0, 1, 2:'“, Z:ly 2)'“’ (1> (2)
2
Ynt1=Yn+ ‘giviki (3)
q
Vnn=ya o+ B ke (p5¢, v/ =) (4)
T:Z/nﬂ_?/nn (5)

where a;, v; and 4 are constants, ya+1 is a formula to obtain the numerical solu-
tion, and %'4+1 is a formula with one order or more higher rate of accuracy than
that of ya:1, T, the difference between these two formulas gives us an estimated
value of the accumulated truncation error.

In 2, we investigate what rate of accuracy we can give to the quadrature
formula, and then show the most appropriate formula in a sense concerning to
each of the cases where a:x0, ¢g=3, 4 and 5.

In 3, as an application of the formulas in 2 to the numerical integration, we
devise automatic integrators of the adaptive type. In 4, giving some numerical
examples, we show the usefulness of automatic integrators by the author.

The formulas presented in this paper are more interesting when used as
quadrature formulas than as numerical methods of ordinary differential equations.

Though we have automatic integrators of various kinds (See [1]), those by
the author seem to have such advantages as follows:

With them,
(1) The algorithm is simple.
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(2) The changes of step sizes can be made completely at will, and so the
application to complicated situations is possible.

(3) We can get the high rate of of accuracy in error estimations.

(4) We can get good efficiency when f(z) is complicated. Especially this
characteristic is vivid when the integration is done in the neighborhood of a

singular point.

2. The formulas and their existence theorem

Theorem 1. Concerning to the Runge-Kutta formula (4) with ¢ functional

computations per step, if we name the highest order attainable
r, g7, (6)

The proof is easily made. Actually the formula of 2gth order is attained,
too.

Theorem 2. Concerning to the general formula (2) to (5) with ¢ func-
tional computations per step, the following can be said.

(1) We can give the error-estimating ability to the (¢—1)th order Runge-Kutta
method (3).
(2) We can not give it the gth order one (3).

In the above cases to make the error estimation possible, we need to have
the difference of at least one order between ys+1 and %'»+1. The proof is easily
made.

As is clear from theorem 2, we can not give to ya+1 the accuracy of the rate
higher than (¢—1)th order. Accordingly, E, the truncation error of yas1 is:

E=htK; fOD(2) 4+ hIH Ky D () - (7)
while 7'2+1 being the method of Sth order, its truncation error E’ is given as:
E'=hsHEKY! £ (2,) 4R TEK ! £ () 4o (8)
where
?
Ki={ 2 w0 ~1/g} (g —1)! | (9)
»
Kz={§1”iaiq~1/(q+1)}/q! (10)
Ky ={ jélﬂiais—1/(s+1)}/s ! 1
Ky ={ zf;l i —1(s+2)} (s-+1)! (12)

With these Ki, Ki/(i=1, 2), we measure the accuracy of truncation error in ya+:
and ¥ n+1.

In the general expression (2) to (5) we think of the cases where ¢=3, 4
and 5. 7'»+1in(4) is the formula obtained by the application of Gauss-Legendre
quadrature formula, which uses ¢ functional values, to



146 M. TANAKA

S:"”ﬂx)dx (13)

In this case, y/n+1 becomes the formula with the highest rate of accuracy of all
those of Runge-Kutta type which need the functional computations of the same
times per step as those of ours. Generally, in the case where ¢=*k the formula
is B—(k—2) shown in Table 1. a:(i=1,2,--, k) in the formula (2) to (5) are

Table 1. The formulas with error estimating ability.

formula ey | g | r | s I Coefficient } K K, Ky } Ky
B-1 3!l 2] 6 a;=0. 8872983346, «,=0. 1127016654, «a3;=0.5, v,=0,=0.5, | 3.33 1.67 s —4.96 | —2.48
-2 — ~7 -7
f= 13 =5/18, pe=4/9 X102 | X107 | X107 | X10
a;=0. 06943184420, at;=0. 3300094782, a3 =0, 9305681558
a,==0. 6699905218, ;=0. 04519229241, ,=0. 6521451549 | 2. 89 1.45 —7.09 | —3.54
B-2 41 3] 8 X 1078 | X105 | X1078 | x1078
*0 v3=0. 3026625527, H1=0. 1739274226, 2=0. 3260725774

#s=0. 1739274226, 14=0. 3260725774

=0, 04691007703,  @p=0, 2307653449,  @3=0. 7692346551
B-3 5| 4|10 | ay=0.9530899230, v;=,=0. 04083499337, vz=1s=0. 4591650066
1= =0, 1184634425, p1== =0, 2393143352, =0, 2844444444

—1.76 | —8.82 | —38.17 | —2.16
X10-4 | X10-5 | x10-8 | X10-®

g: number of functional evaluation per step 7: order of y» s: order of ya’

the zero points of Legendre polynomial Pi(x) of the #'th degree. (See [2]) As
(a1, @tz,++, dx-1), we select, out of the possible :Ci-1 pairs, the one that makes ya+1
a (k—1)th order method with the highest rate of accuracy attainable.

3. The application to automatic integrators

Leaving the definition of the automatic integrator to P.J. Davis and others,
we go on with our adaptive and non-iterative methods [1].

If we set yo=wu'=0, the formula (2)—(5) becomes, as it is, a quadrature
formula with the ability of error estimation. Then y» and .’ denote the
approximate solutions of the definite integral

” f(z)dx (14)

In the formula of Runge-Kutta type which is a one step method, we can
adjust pitches quite freely. Accordingly, if we make use of this advantage and
integrate the interval from the left hand side to the right controlling pitches in
accordance with the accuracy, it will be more effective when f(x) changes sud-
denly than the methods that divide the interval into equal pieces. Then we
study the algorithm to adjust the pitches in the case where the formulas in 2
are used.

When the definite integral

Sb fla)de \ (15)

is to be found, we set the allowable error for the whole interval of the numerical



QUADRATURE FORMULAS WITH THE ERROR ESTIMATING ABILITY 147

integration as €, and the order of the integral formula ys+: as 7.

When the integration up to the nth step has been found within the bounds
of the allowable error, the question is how to decide the pitch at the (z+41)th
step. If the first pitch at the (n4-1)th step is set as A%:+1, the local truncation
error t°z+1 at this step is

n41= T n41— T (16)
where T°»:+1 denotes the difference between ya+1 and ¥'»+1 when the pitch is 2%,
and T. denotes the difference between them in the case one step earlier.
If

P> hb”T“; an

the pitch is excessively large, and so a new pitch %a+1 has to be found out. When

tx+1 denotes the local truncation error for the new pitch Zn.,

tarri= (hna) HC (18)
where C is constant. Similarly,
t°n41= (Ane1)"HC (19)
Therefore
to
Czbrn 20
A (20)
If (20) is substituted for (3.5), we obtain
Ifn+1._—.’<@)r“ton+1 (a1
honet
On the other hand, we must satisfy the condition
hm-lékzi‘E (22)
b—a
Therefore
B ¥
< RS A
}Ln+1_> (b——cz)t°n+1 (23)

That is, we have only to give the new pitch %n+1 the value that satisfies

Roni1) TIE
Bnsi= r[ (A n+1 24
n=a (b—a)t°n+1 (24)
where o being a constant, satisfies

0<axl - (25

Next, if (22) can be satisfied, we advance to the (z-+2)th step. In this case, the
procedure to decide the pitch is just the same as that in the preceding case.
If we assume

£n+23 (Bn42) H1IC (26)
the new pitch A°4ss is

hn T+15

(i @
where « is the constant above stated. Henceforth we will call 1/« the factor of

Arra=a
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safety. (The f.s. as an abbreviation) The f.s. ought to be decided in accordance
with the circumstance taking each kind of cause into consideration. We explain
here the relation between several causes and the f.s.

(1) When pitch % is large, it is rather questionable that we express the terms
of truncation error only by the principal term. Then the f.s. has to be large
enough. The converse is also true.

(2) When the accuracy of the solution is in question, the f.s. has to be large
enough. When high efficiency is desired rather than accuracy, the f.s. has only
to be the value around 1.

(3) Around any sigular point of f(), it is better to set the f.s. large. Ac-
cording to our experiences, @ is enough when 0.9 or 1.0 so long as f(x) has not
particularly bad sort of character.

Through the above study, we have y» as the solution of

S::f(x)dx (28)

and in order to find its error estimate we have y.' the formula with a higher
rate of accuracy. In this way, we can estimate the error, but if we use, as the
solution, ./ which has too higher a rate of accuracy, it won’t be efficient. In
the case of automatic integrators the high rate of efficiency is more desirable
than that of accuracy if only its necessary accuracy is achieved. From such a
view point, we set the allowable error in the small interval with the pitch Anss
as

b—a

where 8 is a constant and #>1. In the numerical examples in the succeeding

(29)

section, we show the cases where =1, 100 and 200.

4. Numerical examples and conclusion
To compare the automatic integrators by the author with ordinary ones, we

take into consideration the following three integrations which have the allowable

error 1074,
(1) S:e"dx (30)
L dx
o am
0, 99 dx
o (" =

The ordinary automatic integrators we have used are:
(a) The ALGOL routine by M. Shibuya which uses Simpson’s rule and, by
halving the pitch gets to the necessary rate of accuracy [4].
(b) The translation of Romberg integration in FORTRAN made by R.H.
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Pennington, which appears on p. 250 in [5], into ALGOL routine, where the
relative error estimation is replaced by the absolute one.

(¢) The translation of FORTRAN routine made by D.L. Russel which, using
the mid-point rule, is adaptive and non-iterative, into ALGOL routine [1].

(d) The ALGOL routine by W.M. Mckeeman and L. Tesler which uses three
point rule and seven point rule by Simpson and is also adaptive and iterative
[61, [31.

Concerning to (d), we have the study by J.N. Lyness, and we follow his

1
Table 2. The numerical solution of S e*dzx (
0

true solution>

1.718281828
error estimate true error true error number of func-
method a 8 yn 7 of yu of yn of yn’ tional evalution
B-1 0.9] 1.0} 1.718365417 1.718281809) 8. 3608 X 10-5| 8. 35891079 —1.9%10-8 78
Q 0.9| 100.0| 1.724783492| 1. 718281820 6.501672% 103 6.501664% 103 —8.0X 109 18
E S W— L
g s 0.9( 1.0f 1.718358954| 1.718281820| 7.7134X 109 7.7126 X109 —8.0x1079 20
2 E B-2 0.9] 100, 0| 1,722301652 1. 718281822 4. 01983 x 1073 4.019824x 1075 —6.0%X109 8
© §° 0.9| 200. 0; 1.722301652| 1.718281822, 4.01983xX 10" 4,019824X 105 -6.0X 1079 8
]
3.5 .
".';. 0.9 1.0 1.718258034 1.718281818 —~2.3784X1075 —2.3794X 1075 ~1.0x10-8 15
« B-3 0.9 100. 0 1.718049192 1.718281821, —2.32629X 104 —2. 326361074 —7.0%10-9 10
0.9 200.0; 1.718049192| 1.718281821 —2.32629% 1074 —2.32636X 104 —7.0%10-9 10
Simpson 1. 718281792 —38.6X1078 17
-8 Romberg 1. 718281839 1.1x10-8 9
o N
g
O 1 1. 718212257 -
:é ‘E (10 division) —6. 9571 X107} 34
g
29 | Midpoint 1. 718237070 —4.4758X 10" 60
£ 8 (20division)
) 1.718221915 -
5 (30 division) —5.9913x 107 4
ASQ 1. 718281916 8.8%1073 19
L g true solution
. . Vol
Table 3. The numerical solution of S —= < )
ol+=z \0.6931471806
error estimate true error true error number of func-
method @ 8 yn 12 of yn of yn of yn’ tional evaluation
B-1 1.0} 1.0[0. 6932348564/0. 6931471801 8. 76763 X105, 8. 76758 X108 ~5.0%10-19 45
° 1. 0| 100. 0[0. 6974634834/0. 6931469402 4. 3165431075 4.3163028 X 10-3 —2.404%10~7 12
E 5 1.0j  1.00.6931002361(0. 6931471797 —4. 69436 X 10-9 ~—4. 694451075 —~9. 0x10- 20
E § B-2 1. 0f 100. 0)0. 6910161808|0. 6931469724] —2. 1307916 108 —2. 1309998 X 10-3 —2.082x10-7 12
» ? 1.0} 200. 00. 6902996006/0. 6931467799| —2. 8471793103 —2, 8471793 10-9| —4.007%x10-7 8
8.8
S 1.0  1.00. 69312074230. 6931471800 —2.64377X 1075 —2. 64383 X105 -6, 0x10-19 20
=
© B-3 1.0} 100. 0/0. 6927032092(0. 6931471698 —4.439606 X104 —4. 439714 104 —2.68X10-8 10
1.0 200. 00. 6927082092(0. 6931471698] ~-4. 439606 X 10~4 —4.439714X 104 —2.68X10-8 10
Simpson 0. 6931476552 4,716 x10~7 17
-8 Romberg 0. 6931471812 6.0%10-10 17
«
g3 0
3] . 6930927017, -
é ga (10 division) ~5,44789x 10-5 30
o
i S 0. 6931004666 -
§.5 Midpoint (20 division) —4.6714x10-8 32
B 0. 6931124655 -
5 (30division) —8. 4725110~ 30
ASQ 0. 6931474753 2.947x1077 19
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0.99 tr luti
Table 4. The numerical solution of So dz ( ue so ut10n>

1—z \4. 6051701860
error eStimﬂte true error true error number Of fuﬂc
method @ B yn 124 of yn of yn of yu’ tional evalution

51| 1.9 1.0[4 60527038 4605170443 9.9895%10~Y  1.00152x 104 2.57%1071 2,583
o 0.8| 100, 0 4.610930730] 4. 605170125  5.760605X 103 5.760544x10°3 —6.1%x10-¢ 288
£y 0.8 1.0 4.605249593| 4. 605170115 7.9478X 1075 7.9407% 105 —7.1%1079 283
£5 | B2 | 0.7 100.0] 4606963075 4.605170091 179388410 1.793789x10°¢ ~9.5%10-¢ 124
Py 0.7] 200, 0| 4. 607343057] 4605170100,  2.172952X 10~  2.172866X 10~ —8.6X1079 124
8.8 -
4 0.71 10| 4.605112857| 4.605170119]  —5.7262x 107  —5.7329X 10~ —6.7X10"8 145
5 |Bs | 0.5 1000 4.600307008] 4.605168882] —4.861874X10~%| —4.863178X10%  —1.305x10°7 75

0.5 200.0| 4. 594715120| 4, 605161797 —1.0446668X 102 —1.0455057X10% ~  —8.389X 100 95

Simpson 4, 605170159 —2.7%1078 2,049
© | Romberg 4. 605168163 —2.023X 100 1,025
o
£8 4, 603898194 _
%é 4 S —1.271992X 103 205
22 | Midpoint Godiicon —2,64178X 104 284
BE
=1
5 ?égg?‘??giﬁ; —1.32699% 1074 350
o

ASQ 4. 605171919 1. 733X 1079 186 -

advise to decide the allowable error in the sub-intervals [3].

In Table 2, 3 and 4, the results of the computations of examples are given,
where Simpson, Romberg, Midpoint and ASQ denote automatic integrators (a),
(b), (c¢) and (d) respectively. As the methods by the author, we take up three
automatic integrators, each of which uses B-1, B-2 and B-3 respectively.

In the case of automatic integrator (c), the efficiency varies widely according
to the decision of primary pitches. We seek for the solution setting the primary
pitch as 1/10, 1/20 and 1/30 of the whole interval.

From Table 1—Table 4, we can get the following conclusion.

(1) When B-1—B-3 are used as quadrature formulas, the formulas of higher
orders seem to have higher efficienty.

(2) In the case of the integration around a singular point, such as (32), the
automatic integrator (a) and (b) are ineficient. As the methods proposed by the
author are thorough especially about adaptability, the one that uses a formula
with such a high order as B-3 is greatly efficient for these problems,

(3) In such cases as (30) and (31) where F(z) doesn’t make any sudden
changes, and the interval of the integration is not near the sigular point, such
interative method as (a), (b) which divides the interval into equal minute pieces
has, among the ordinary ones, greater efficiency, while the methods by the author
are very effective as well. Generally, for the integration under such circumstances
the f.s. need not be so large. In the above cases, for example, the inverse of
the f.s. will be appropriate when in the range of 0.8~1.0.

On the other hand, for the integration near a singular point such as (32),
it will be more efficient that we take the bigger f.s. in the auther’s non-iterative
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automatic integrators, because we can avoid unnecessary repetitions. For example,
the inverse of the f.s. in this case will be appropriate when 0.5—0.8. In the
author’s routine, the trial to enlarge the f.s. will have to be made to increase
the efficiency when meaningless repetition goes on.
(4) In Formulas B-1—B-3, ¢/»+1 has a much higher rate of accuracy than ya:1.
Therefore, it has much smaller error than the allowable one even when 8=200.
In conclusion, we recommend the formula B-3 as the quadrature formula.
When very hard conditions are given, we had better let 8=1.0 and find the
numerical solution y» together with the error y»—y»'. We think the automatic
integrator that uses the formula B-3 has the higher efficiency than any other
ordinary one when f(z) is complicated.
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