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An Approximation of a Curve with Circular Arcs
TaxanikO KAMAE* AND Makorto Kosucr*

1. Introduction

This paper treats the data reduction and reconstruction of 2-dimensional
graphics composed of curved lines.

Several proposed methods [1] representing a curve as a concatenation of
straight line segments are not successful in the preservation of smoothness of
curves. There exists another algorithm which connects given points smoothly
with circular arcs [2]. This algorithm is very simple on the procedure for re-
storing curves, but sometimes causes undesirable oscillations.

In this paper we present an optimum sampling method which prevents the
oscillations in the process of reconstructing an original curve with circular arcs.

We assume a treated curve is given as an explicit function of = such as y= f(z).

2. Cause of the Oscillation

The algorithm in the paper [2] takes the assumption that each segment of
circular arcs should have the same tangents at both ends as the adjacent ones’.
Therefore, the restored shape of a curve is determined at once by an initial
tangent and sampled points. The deviation in each segment from an original
curve accumlates from segment to segment and result in inducing such oscilla-
tions as seen in Fig. 1. This oscillatory phenomenon is remarkable in case that
the original curve decreases its curvature monotonically as shown in Fig. 2 (a).

Let the initial tangent of an original curve be M: and the end points of the
first circular arc be 1 and P;; then the problem is to select the next end point
Ps of the second circular arc. Assuming that M: and m: are the tangent of the ori-
ginal curve and an approximate curve at point Py, the latter is determined directly
from circular arc P:P,. For the simplicity we call the tangents at the end points
of the remarked circular arc the incoming and the outgoing tangent, according
to the sequence to be connected. At this point, we select a position of Ps for
chord P:Ps to turn outside of m., the sign of the curvature of the approximate
curve will be opposite to the original curve and the oscillations start.

In case that the original curve increases its curvature monotonically as
shown in Fig. 2 (b), we can select the position of Ps very easily so that the chord
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Oscillatory «—F3—= Non-Oscillatory

Fig. 1 Oscillation induced by
calcatenation of circu-
lar arcs.

(b 6,<6,
Fig. 2 Sampling method for an approximate
curve with circular arcs.

turns inside of m: because m: turns outside of M, But it should be noticed
that the similar condition to the previous case occurs in next segment P3Py
whenever P3 may be selected where ms turns inside too much, and the oscilla-
tions begin.

From these considerations, we find it very difficult to select appropriate

points successively from the original curve without causing the oscillation.

3. Sampling Algorithm which Prevents the Oscillation

Now, we consider our procedure, that is, encoding the original curve as chain
of primafy sampling points which approximate the curve and of secondary
sampling points in the manner that the latters interlace the formers.

- We prove that there exists a point Q (secondary sampling point) which can
prevent the oscillation between points P: and P of the original curve, where
Fig. 3 shows the optimum position of Q.

At first, let us formulate a relation between @ and 7z We assume that the
original curve has continuous derivatives of at least first and second order in
the segment P1P; and is convex. These conditions will not impose special re-
quirements on primary sampling points. Hence 0: is greater than 6:; moreover

L 0<B<Oi<mz | (1)
The other case 6:>6, will be mentioned later.

From Fig. 3 tangents M), M:; and m (=P:Q) and nz (=QP:) are shown as
follows
Mi=tan 6, m=tanf } (2)
My=—tan 6, ng=—tan y
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Fig. 3 Secondary sampling points which prevent
the oscillation (61> 62).
Using these notations of Mi, 71 and 7, the expression of m2 is

_ —2(ne—n1)(mna+ 1)+ M {(n1—ne)? — (mina+1)% (3)
(ni— 7!2)2— (mama+ 1)? +2M1(nz —ny)(ninz+ 1)

Here, if we let a=_/PiQP;, a represents a continuous function obviously in an

msa

open interval where P1<Q<P, and we obtain

Ng— N1
1+ning

tan a=—tan(B+7)= (4)

from a=z—(8+7).
We can show that tan a (<0) is a continuous function in this interval (P, P2)
using following inequalities
wf2<n—0i<a<n—0:<m (5)
These inequalities are derived from the relation between @ and a. From (5),
ms can be expressed in terms of a variable tan a;

—2tan a+M;(tan? a—1)

Moo=
2T tan a—142M, tan «

(6)

Here, if we introduce a new variable ¢ (=tan a—1/tan ), we obtain

—92+ Mz E
t+2M, (7)

It is easy to show that m2(¢) is a continuous and monotonically increasing func-

mz(t):

tion in the following interval
ti=—Mi+ 1M <t<Ms—1/My=t, (8)
these are derived from (5), where ¢ and ¢. correspond to the limit of # when
Q approaches P: and Py, respectively. Now if we let
f(t)=ma(t)— M, ' (9)
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we can derive following equations

flt)= lim Of(t): —(tan 6, —tan 65) l
=i+
Fleo=lim f()=—3EHE (10
tan Ot ) I

where tan 02 and tan(61—0:) are positive. Hence it has been proved that a root
of f(¢)=0 exists in the interval (¢, ¢,), that is, the root of f{t(a)} =0 exists in
the range of (5). k

Next we consider this process geometrically by using Fig. 3. Let 0.=/DP,P;

in order to investigate a geometrical relation between m: and Q, then

0.=/DP;Q+ /QPyP1=21—0,—2 11)
From (5) and 6.,=60.—0:, we have
=010 <O2—0:< 0, (12)

Namely, as @ moves along the original curve from Pi to P,, ms: turns from ma
to ms as shown in Fig. 3. Hence m: varies throughout of the range between
0., and —0,, and the center of the range is Mi In other words, we can say
that the deviation up to the extent of =+0. of the incoming tangent can be
canceled in the segment.

As an example of this process, Fig. 4 shows a graph of angles (0.—0:) be-
tween tangents of the approximate curve and of the original curve y=—z2

Now it should be noticed that @ will not be a point of inflexion in the ap-
proximate curve and hence will not yield an oscillation in the segment when Q
induces the equation mz=M,. -

On the other hand, when the curvature of the original curve increases mono-
tonically (i.e. 61<0z), ms varies over the range between 6. and —0. similarly to
the above case, but the orientation of 72 changes from the outside to the inside
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Fig. 5 Secondary sampling points
which prevent the oscilla-
tion (6:1<62).

x/1
Fig. 4 Angles (0.—02) between tangents of
an original curve and of an appro-
ximate curve (y=—xz2).
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of the original curve with @ moving from P: to P: as shown in Fig. 5. Conse-

quently, there exists @ for which the equation m:=M: is satisfied. Moreover,

this @ never yields the oscillation in the segment.

From these considerations, it has been proved that there exists @ which

prevents the oscillatory phenomenon.
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Fig. 6 Example of a curve

restored by the pro-
posed method
y=0. 1z(x?—27)
Total sampled
points: 29
(D primary 15, )
M : secondary 14

Example of a curve
restored by the pro-
posed method

=) 15)

Total sampled
points:75 -

([]: primary 38, )
M : secondary 37
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The procedure to obtain @ is reduced to the method which searches a root
of a equation f(x)=0; we take any value, say, 2'=(z1+x:)/2, in the interval
[z1, zz] where f(z1): f(22)<0 (we put f(z1)<0, f(z2)>0). By substituting z' in
f(z), we obtain on replacing z1 by z’ a narrower interval [2/, z:] if f(z')<0,

whereas if f(z/)>0, we obtain a narrower interval [z, z'], and so on.

4. Examples of Approximated Curves

Fig. 6, 7 show examples of curves restored by proposed method. Fig. 6 is
a function y=0.1x(2*-27), and Fig. 7 is a function y=10sin(rz/3)/(rz/3), where
we adopt a least square approximation for primary sampling points.

5. Conclusion

We have proposed a method which approximates curves given by algebraic
functions. Furthermore, the proposed method can be available for a problem to
connect scattered points smoothly by fitting appropriate explicit functions to
those points.

When we process graphics by computers this method is one of the efficient
means not only for the representation of smooth curves, but also for the data
reduction of figures. Then this method can contribute to the transmissions, the
storages and the processing, of figures.
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