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A Matching Transformation of
a Bipartite Graph

Jun NumaTa*

Abstract

A matching transformation is defined between two complete matchings on
a bipartite graph, where the bipartite graph corresponds to a certain matrix and
each complete matching corresponds to each term of its determinant. Here,
some structual properties of the set of complete matchings are investigated, and
a method for generating the set of complete matchings by the matching trans-
formation is introduced. The properties of a circuit in a bipartite graph is also
discussed with respect to the alternation of matching edges and nonmatching

edges.

1. Introduction

The present paper introduces the concept of matching transformations among
the set of complete matchings on a bipartite graph and discusses properties of
matching transformations. The concept of matching transformations is useful
for generating all complete matchings on a bipartite graph and for the calcula-
tion of determinants. Furthermore, we will investigate the properties of circuits
on a bipartite graph by means of alternating paths whose successive edges
alternatly belong to and do not belong to a given complete matching. If a ring
sum of two complete matchings M: and M, on a bipartite graph forms an
elementary circuit, then the matchings will be said to be matching-transformable
to each other. Since any two complete matchings can be related to each other
by a matching transformation, the structual properties of the set of complete
matchings can be clarified in terms of matching transformations. An undirected
bipartite graph is one of graphical expressions of a matrix, and, at the same
time, a matrix can be expressed in terms of a directed graph (often called a
signal flow graph or a flow graph). The relation between a directed graph and
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a bipartite graph is made clear through an “augmented graph”.
2. Basic Concepts

Throughout this paper, the notation and terminology are based mainly on
references [1] and [3]. We will confine our attention to undirected graphs
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G{E,V} where E is the set of edges and V is the set of vertieces, i.e. the graphs
for which the orientations of edges are of no significance. Generally, a set of
edges E is expressed as a subset of the cartesian product VXV of the vertex
set V with itself. A graph G{E, V} is a bipartite graph, if the vertex set V is

relation
ECVLx Vg (1)
is satisfied. V. and V& are called the left vertex set and the right vertex set of
the bipartite graph. A binary operation ® on two subgraphs Gi{E:;, Vi} and
G2{E2, Vi) of a graph G{E,V} is defined by
Gi{E1, Vi}® Go{Es, Vo =Gs{E1@E;, Vi} (2)

when V1=Vs, where operator ® in Ei@®FE: is a set-teeoretical operator such as
U (union), N (intersection),—(difference) and ® (ring sum). A matching M on
a bipartite graph G is a subgraph M {Ey, Vu} of G{E, V} such that every vertex
of Vi is an end point of at least one edge of Ey, and that no two edges of Ex
have a vertex of Vi incommon. An edge is said to be a matching edge if it
belongs to Eu, and otherwise, it is said to be a nonmatching edge. If |Ex|(=the
number of matching edges of M {Exy, Vu}) is maximum among all the matchings
on G, then M is called a maximum matching on G, and if Vy=V then the
matching is called a complete matching on G. If every edge (v, v") of G satisfies
v'eVyi or v'eVy then the pair [V:/, V'] is said to be a cover of G, where
Vi/CVy and VR/'SVe If [V/|4 V| is minimum among all the possible cover
of G, [V, Vr'] is called a minimum cover of G. If [V, ¢] and [¢, Vr] are the
minimum covers [V1/, V#'] of a bipartite graph G and no other minimum covers
exist, then G is called an irreducible bipartite graph. Let G[E,V.UVz] be a
bipartite graph and let V. and V& be partitioned as Vi=V5,UVi2U--UV5s and
Ve=VmU-UVrU-UVk. into the union of disjoint subsets. The induced graph
G*{E*, VLUV *x} with respect to the partition is the graph whose vertices /;*€V.*
and 7;€Vz" correspond to Vii, Vs, respectively (¢, j=1, -, n), where an edge
({2, 7;*) exists if and only if (ViixVz)NE is not empty. Let Ei and L2 be two
disjoint subsets of E of a graph G{E,V}, a path P (a circuit C) is said to be
an alternating path (circuit) with respect to [Ei, E.], if, in its edge sequence,
the edges belonging to Z: and those belonging to E: appear alternately. Espe-
cially if o(P(vi, v;)) (the length of P) is odd and both v: and v; are the end points
of the edges of Ei (or Ez) P is called an alternating path with respect to [£:*,
E:] (or [Ei, E2*]). An algorithm [6] is known to obtain a complete matching
on a bipartite graph by means of alternating paths. It is obvious by the defini-
tion of a complete matching that each term of the determinant of a matrix
corresponds to a complete matching on the corresponding bipartite graph. The

following two theorems are fundamental in our discussion.
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Theorem 2-1. If G is a bipartite graph with vertex sets V. and Vz such that
IVi|=|Ve|=n and if G contains a circuit C of length o(C)=2n, then G is an
irreducible bipartite graph [5].

Theorem 2-2. Let G{E,V.UVz} be a bipartite graph. Suppose there is a
partition Vi=V5UVi2U--- UV, Va=VaUVzU--UVz of V. and Vi into disjoint
subsets such that each of the subgraphs which is composed of the edges
EN(V5ixVr) (i=1,2, -+, k) is irreducible. And G* be the induced bipartite graph
by the partition. Then, G is irreducible if and only if G* is irreducible [5].

The property that there exist at least two disjoint complete matchings in
an irreducible bipartite graph, is frequently used in the following discussion.

In the following sections, a bipartite graph means an irreducible bipartite graph.

3. Matching Transformation

Let M: and M: be two complete matchings of a bipartite graph G. By
definition, the degree of every vertex in the subgraph M is 1 and so is M.
Therefore, the degree of every vertex in the subgraph which is obtained by the
union of two subgraphs Mi{Ei, Vi} and M:{E:, V3} is 1 or 2, so that the subgraph
which is formed by Mi(PM. consists of disjoint alternating circuits with respect
to [y, Eg].

Definition 3-1. Two complete matchings M and M, on a bipartite graph
G are said to be adjacent to each other, if M:@M, forms a circuit C. The
transformation of M and M (or, conversely, M; to M) is said to be the matching
transformation with respect to C.

In other words, if M:{E;, V:} is a complete matching on a bipartite graph
G{E,V} and if a circuit C{E., V¢} is an alternating circuit with respect to [,
E—E;], then the transformation of M; to M [E;, V]=M,[ E:DE., V] is the match-
ing transformation with respect to C.

Definition 3-2. A circuit of a bipartite graph G{E, V} is said to be a match-
ing circuit of G, if it is an alternating circuit with respect to [Ev/, Ey'] and
there exist complete matchings Mi{E,, V} and M.{E,, V} where E{/CE; and
EJ/ CE,.

Theorem 3-1. If two matching circuits Ci1 and C: of a bipartite graph G{E,
V} form alternating circuits with respect to [Ex, E—Ey] where Eu is the set of
all matching edges of a complete matching M and CiNC; forms a path P, then
P is an alternating path with respect to [Ex*, E—Ey]. In general, if CiNC,
consists of disjoint paths Pi, Py, ---, P, then every Pi(i=1, ---, k) forms an alter-
nating circuit with respect to [Ew*, E—Ex].

Let M;{E;, V} be a complete matching on a bipartite graph G{E, V}. If the
matching transformation with respect to a circuit C changes M; to M,{E;, V}
and if there exist alternating paths with respect to [E:, E—E;], [E*, E—E;] and
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[Ei, (E—E:}*] in C then these paths are alternating paths with respect to [£;,
E—E;], [E;, (E—E;*] and [E/* E—E;], respectively. These properties follow
from the relation M:PM;=C, which in turn entail the following theorems.

Theorem 3-2. Let M {Ey, V} be a complete matching on a bipartite graph
G{E, V} and if matching circuits C: and C: form alternating circuits with respect
to [Eu, E—Ey] then C1@C: forms a matching circuit or a set of matching circuits.

Theorem 3-3. Let M;{E;, V} be a complete matching on a bipartite graph
G{£,V} and there exist matching circuits Ci, C» and Ci(k=1, -, p; CiDCa=
C/UCYU--UC, where Ci'’s are disjoint) where Ci and C» are matching circuits
with respect to [E;, E—E;]. If M;{E; V} is obtained from M; by the matching
transformation with respect to Ci, then Ci and C¥ (k=1, -+, ) form alternating
circuits with respect to [E;, E—E/].

Theorem 3-4. Let M,{E;, V} be a complete matching on a bipartite graph
G{E, V}, and Ci, Cs and C¥ (k=1, -, p; C:®Ce=C/UC/U---UC, where Ci’s
are disjoint) be matching circuits and C: and C: are alternating circuits with
respect to [E:, E—E;]. The complete matching which is obtained by the sequence
of the matching transformations with respect to C1 and C¥ (k=1, -+, p) is the
same as that which is obtained by the matching transformation with respect
to Ca.

4. Generation of Complete Matchings

Let us present a method of generating all complete matchings on a bipartite
graph. The method is useful also for calculating the determinant of a matrix
and for solving a signal-low graph. By virtue of the preceeding section, com-
plete matchings are related to one another by matching transformations. Now,
we will show that the set of all complete matchings can be obtained by succes-
sive matching transformations with respect to a prescribed set of circuits.

Definition 4-1. A set of circuits is said to be basic circuits for a complete
matching M {Ey, V} on a bipartite graph G{E,V} if the set contains all the
alternating circuits with respect to [Eu, E—Ex] and them only.

Theorem 4-1. If M is a complete matching on a bipartite graph G then
any complete matching except M itself can be obtained by a sequence of match-
ing transformations with respect to circuits belonging to the set of basic circuits
for M.

By the theorem 4-1, the set of all complete matchings of a bipartite graph
can be generated by the successive matching transformations with respect to
all the sets of disjoint basic circuits. The basic circuits may be obtained, e.g.,
by the methods presented in references [7] and [8]. A concrete procedure of
generating all complete matchings using the pushdown memory is as following.

Let the set of basic circuits be Ci, Cs, -, Ci-1, Ci. We will denote the i-th
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set of disjoint basic circuits appearing in the procedure by Ni={Ci, Ciz, -+, Cin}
where i1<i»<-:-<is. First, determine an arbitrary complete matching M, on
the bipartite graph under consideration and then enumerate the set of basic
circuits for Mo. Then, store Mo on the top of the pushdown memory and set
iZl, 72:1, Cii=Cy and N:= {Cl}-

(I) Put a=Ci, and transform the matching stored on the top of the pushdown
memory with respect to @ to obtain new matching M:. If N;={C4}, the process
terminates. Otherwise, store M; to the pushdown memory and go to (IV) or
(II) according as a=C% or axCs.

(II) Replace a by the basic circuit next in the sequence and put tentatively
Ni1=N:U{e}. If the circuits in Ni. are disjoint return to (I), otherwise go to
(II1).

(III) If a=C, then go to (II), and if a=C, then replace Ni by N;—{Ci,} and «
by new Cin, and then pop up the entry on the top of the pushdown memory,
and go to (II).

(IV) Replace N; by Ni—{Ciny, Cin}, set a=Cin_y, pop up the pushdown memory
and go to (II).

It is obvious that all the complete matchings are generated in (I) of the
above procedure. The above procedure may be applied to the calculation of
determinants, where each complete matching corresponds to a term of the
determinant. The sign of a term can successively be decided by starting from
M, with the positive sign and changing the sign in (I) when (1/2)-p(a) is even.

5. Properties of a Circuit in a Bipartite Graph

We will investigate properties of an alternating circuit with respect to [Eu,
E—Ey] in a bipartite graph G{E,V} having a complete matching M{Eu, V}.

Theorem 5-1. Let M {Eu, V} be a complete matching on a bipartite graph
G{E,V}. Then any matching circuit is expressible as a ring sum of alternating
circuits with respect to [Ew, E—Ey].

Theorem 5-1 can be extended to an arbitrary circuit of a bipartite graph.

Lemma 5-1. Let M; and M; be arbitrary complete matchings on a bipartite
graph G{E, VoUVz}. If MiUM; is expressible as a sum CiUCzU---UC» then the
induced graph is obtained with respect to the partition Vo=V, 1UVi2U - UV 1a,
Ve=VruU--VeU--UVz where Vi;UV¢=C: (i=1, -, n). Taking two complete
matchings in G* and continuing similar procedure, we will finally have an induced
graph with one and only one edge.

Theorem 5-2. If a bipartite graph G{E, V, UV} (|V.|=|Vz|) is irreducible
then between arbitrary two verties /i, [;&V 1 (or 7:, r;€Vz) there exist at least
two alternating paths with respect to [Ew, £— Ey], where Ey is a set of matching
edges.
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Theorem 5-3. Let M {Ew,V} be a complete matching on a bipartite graph
G{E,V,UVs}. For alternating paths P1 and P; between L€V, r;&Vr with re-
spect to [Ew*, (E—Ex)] and [Eu, (E—Ex)*], the ring sum Pi@P; is expressible
as the ring sum of a set of alternating circuits with respect to [Eu, E—Ey].

Theorem 5-4. Let M{Ey, V} be a complete matching on a bipartite graph
G{E,V}. Then any circuit is expressible as the ring sum of a set of alternating
circuits with respect to [Ew, E—Ex].

Theorem 5-4 is equivalent to a theorem in [9] for a directed graph that

any circuit in a strongly connected directed graph is expressible as a ring sum
of directed circuits.

6. Conclusion

In this paper, we introduced the concept of matching transformation on a
bipartite graph and, on the basis of it, investigated the properties of an irredu-
cible bipartite graph. These properties are useful for calculating determinants.

The result are applicable to a reducible bipartite graph by neglecting inadmis-
sible edges [4], [5].
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