80

Graph Programming Language One (GPL/I)
Kazuyuki Imafuji*

ABSTRUCT

This paper describes a language for handling graphs as a new type of data,

This language is called Graph Programming Language One(GPL/I) and is defined as
an extension of PL/I, It consists of two kinds of statements, that is, GPL/I and
PL/I, ’One GPL/I statement is translated into PL/I statements by means of a pre-
compiler(GPL/I compiler) which was developed for IBM System 370/165, In this
compiler, graphs are represented by one-directional lists and new graphical opera-
tions are defined,

A sample program to get one spanning tree of a given graph is also shown,

1, INTRODUCTION

Graphs (linear graph) have been used in various fields as a useful tool to solve
problems, such as electrical circuit analysis, network flow problems, PERT dia-
grams in linear programming etc.

When these problems are solved by means of graphs, connection matrices are
usually used(l) and are handled by computer, But it requires much labor to con-
struct a connection matrix as an input datum to the computer, And if operations on
a graph or between graphs are performed, then various subprograms are required.
So, graph users usually develope these subprograms individually, In order to
emancipate users from these troubles, some languages dealing with graphs have
been designed and developed by many investigators. R.C. Read et al. has de-
signed Graph Theory Programming Language(GTPL)(2). It takes an existing

language, FORTRAN, as its basis and adopts the extra statements such as defi-

This paper first appeared in Japanese in Joho — Shori (Journal of the Information Processing
Society of Japan), Vol. 13, No.12 (1972), pp. 818~ 824.
* Mitsubishi Electric Corp.

81

nitions of graphs ana grammatical structures necessary to handle graphs., On the
other hand, S. Crespi-Reghizzi et al, has reported Graph Extended ALGOL(GEA)
(3). From the standpoint of applications, associated functions concerning points
and lines are adopted in GEA, As an extension of LISP 1.5, GRASPEL. 5 has also
been reported(4)(5). This was designed to solve pute graphical problems,

GPL/I language, GPL/1 compiler and GPL/I system libraries constitute the
GPL/I system. This system is based on PL/I language, because the language has
new functions such as dynamic allocations of memories, structured data, and,
especially, a list processing functions,

The language structure of GPL/I, the internal structure of graphs and an ex-
ample of its usage are described in this paper.

For definitions of terms on graphs, the reader may refer to Berge(6)or Harary

(7).

2. STRUCTURE OF GRAPH STATEMENTS

GPL/I language is an extension of PL/I language and its syntax is generally
dependent on the syntax of PL/I. The statements for handling graphs are called
GPL/I statements and are distinguished from PL/1 statements, Only GPL/I state-
ments will be described here, The reader may refer to the manual on PL/I state-

ments(8),

2.1, Declaration of graphs
The user of GPL/I may handle simple graphs, multi graphs, simple digraphs
and multi digraphs, Fig.l shows graph types and their examples.

The graph type which is called attribute must be declared in a DCL statement,

simple graph |simple digraph

$DCL NETI1 SIMPLE GRAPH, 2

2
NET2 MULTI DIGRAPH; : 4
{
3 -4 3

.4
By this DCL statement, NET1 and NET2

multi graph multi digraph
are registered as a simple graph and a 2 ! 2
1\ 12 1 1 RS
. multi digraph, respectively, t
“ 3 ‘o 3

Points and lines of a graph may be Fig.1l., Types of graphs

82
refered by following forms,

graph name(EE), (1)

graph name(EEl, EE2 [EE3J Y, | (2)
where (1) is used for referring a point and (2) is for a line, EE is an abbreviation
of the "element expression', EE3 in (2) may be used in case of a multi graph, In
case of a directed graph, EEl and EE2 in (2) are an ordered pair, but in case of a
simple graph their order is meaningless,

Examples of the forms (1) and (2) are shown below,
NET(2) a point of point number 2 in the graph NET,
NET(I, J+1) a line connecting two points whose numbers are the value I and

J+1 in the graph NET,

NET ;VOLT
In many graphical problems, it is necessary to
assign functions over the set of points or the set $RESIST
$CURR
of lines. Users of these functions which are 1 gvorLr

called a point function or a line function must
Fig.2. Example of point
declare them in DCL statements, & line functions
A point function and line functions in Fig, 2 must be declared as follows.
$DCL 1 NET SIMPLE GRAPH, 2 $VOLT PFUNC,
2 $RESIST LFUNC, 2 $CURR LFUNC;

The following statements show some examples of the usage of these functions.

$$VOLT(NET(1))=20.0; $$RESIST(NET(1, 2))=5. 0;

2.2. Operations on graphs

Four kinds of operations between graphs are defined: a complement graph of a
given graph; a sum of graphs; a difference of graphs; and an intersection of graphs,

(1) Complement of a graph

This operation is a unary operation and its operator is denoted by ''. A comple
-ment graph |G of a given graph G consists of the completé graph made up of all
points in G except the lines which are contained in G and the isolated points pro-

duced as a result of deleting the lines contained in G from the complete graph.

83
(2) Sum of graphs

This operation is a binary operation and its operator is denoted by '+'. A sum
graph Gl+G2 of two given graphs Gl and G2 consists of points and lineé which are
contained in Gl or G2, or in both,

(3) Difference of graphs

This operation is also a binary operation and its operator is denoted by '-', A
difference graph Gl-G2 of two given gréphs Gl and G2 consists of points in Gl ex -
cept isolated points, which are produced as a result of deleting the lines contained
in G2 from Gl, and lines in Gl not contained in G2, Gl must completely contain G2,
that is, G2 must be a subgraph of Gl.

(4) Intersection of graphs

This operation is a binary operation and its operator is denoted by '*', Ap inter -
section graph G1*G2 of two given graphs Gl and G2 consists of points and lines
which are contained in both Gl and G2, but isolated points which are produced as a
result of this operation are excluded,

As operations carried out between elements contained in a graph, the following
are defined; addition and deletion of points or of lines, change and exchange of

names of points.

2.3, Other GPL/I statements
The following is the outlines of new statements.
(1) Assignment statement
The graph on the right hand side of the equality sign or the result of graphical
operations on the same side (whose attributes are converted into those of the graphs
on the left hand side, if necessary) is aésigned tc; the graphs on the left hand side.
(2) IF statements
This statement tests the existence of a specified element of the given graph or
~ the specified character of the given graph and controls the flow of the executions
according to the result of the test, GPL/I has tw‘o types of the IF statement,

$1F () specified element THEN unitl ELSE unit2 (3)

84

$IF graph name (=)= IF keyword THEN unitl ELSE unit2 (4)

In case of (3), if a graph contains a specified element, '"unitl" is executed and

then control passes to the statement following the IF statement; otherwise, 'unit2"

is executed and then control passes to
the next statement. In case of (4), if
a graph has a specified character de-‘
termined by an IF keyword, ''unitl" is
executed; otherwise, '"unit2'" is ex-
" ecuted. The executions following the

execution of "unitl" or "unit2" are

the same as those in (3). IF keywords
are listed in Table 1,

(3) DO statement

Table 1,

List of IF keywords

Keyword

Meaning

COMPL Is graph complete or not?
CONT Is graph connected or not?
CYCL Is cycle contained or not?
EMPT Is graph empty or not?
FORST Is graph forest or not?
PATH(I,J) |Is path from I to J contained

or not?
REGR Is graph regular or not?
REG(N) Is graph n-regular or not?
TREE Is graph tree or not?

The DO statement delimits the start of DO-group and provides for controlled re-

petitive execution of all statements in that DO- group on all points or lines in the

specified graph, This statement is used with $ END statement,

(4) Built-in function

Many kinds of built-in functions on graphs are listed in Table 2.

3. GPL/I COMPILER AND LIBRARIES

3.1. Internal representation of graphs

Although graphs are usually processed

in the form of connection matrices in
the computer, following two problems
typically arise:

(1) The efficiency of utilizing core
memories becomes lower as the size of
a graph grows larger, For example,
the connection matrix used in power

6
system contains about 4x10° elements

Table 2,

List of Functions

Functions Meaning

IQ@COMP(G) Number of components
I@DEG(G,K) | Degree of point K(graph)
I@DEGI(G,K) | Indegree of point K(digraph)
I@DEGO(G,K) | Outdegree of point K(digraph)
IG@EDGE(G,K) | Neighbour point of point K
IeTYPE(G) Type of graph

I@LINE(G) Number of lines

IeMAXD(G) Maximum degree(graph)
I@MAXDI(G) | Maximum indegree(digraph)
IeMAXDO(G) | Maximum outdegree(digraph)
IGMAXN(G) Maximum point number
I@MIND(G) Minimum degree(graph)
I@MINDI(G) | Minimum indegree(digraph)
I@MINDO(G) | Minimum outdegree{digraph)
I@MINN(G) Minimum point number
I@NODE(G) Any point number

IGPOINT(G) Number of point

85

but only about 3x103 elements are meaningful (9),

(2) Matrices are usually represented in the computer by one dimensional arrays

to get high efficiency of utilizing memories.

But the operations of a graph such as

additions or deletions of points or lines decrease the speed of executions,

In view of these Graph directory

[nae [pLisT [rYPE[POINT[LINE] PFUNC | LFUNCI

LFUNC2 J

facts, graphs are

represented by one Point list

['NExr[orLp | INLP [NAME[OTDEG [INDEG [PFUNC |

-directional lists,

Line list

These lists are

[NExr[naME [LFuncy [LFunc? |

automatically

treated by GPL/I, so that programmers
need not be aware of the internal repre-
sentation of graphs.
graph directories, point lists and line
lists, constitute theée lists, Fig.4
shows the internal representation of the
given graph, For simplicity, the

point function and the line functions are

omitted in this figure,

3,2, Compiler

As shown in F'ig. 3,

Fig.3. List structure
4
SAMPLE
5
2
Graph directory ‘a
[(SapiE 5 215131 3
T 1, [—Til2]0] 2
S S ST R
o l)l 1310|1l\|4u
e A I 5]
e P W B A Y 7]

Point lists Line lists

Fig.4. Example of list staructure

GPL/I source programs consist of GPL/I statements and PL/I statements.

GPL/I compiler reads in the source programs and writes out PL/I statements with-

out any change and converts a GPL/I statement to PL/I statements.

GPL/I state-

ments are led by the character '$' to be distinguished from PL/I statements. This

simplifies the compiler,

3.3, System libraries

This GPL/I compiler is written in PL/I language.

GPL/I system libraries are used to execute object programs of GPL/I compiler,

These libraries contain about 60 subprograms.

86

4. AN EXAMPLE OF GPL/I PROGRAM

This program generates one spanning tree

3
1
of a given graph A, A spanning tree B of a ‘\
graph A is a subgraph of A which is a tree VA‘ \

and contains all the points of A, The algo-

4
rithm of this program is as follows,
6
Fig.5. Input graph & spanning tree
STMT NO. GPL/I SOURCE STATEMENT DATE = 72/04/15 PROC MO.= 1 PAGE = 1
/% GPL/1 PROGRAM EXAMPLE 1SPANNING TREE SUBPROGRAM! */ $PS01000
1 SMAIN ¢ PROC DPTIONS{MAIN); SPS01100
VA4 $PS01150
2 $ DCL (NET,TREE) GRAPH; $PS01200
3 3 GET NET; §PS01250
4 CALL SPANTREINET,TREE); SPS01350
5 s PUT TREE; §PS01400
6 $ END MAIN; SPS01450
STMT NO. GPL/I SOURCE STATEMENT DATE = 72/04/15 PROC NO.= 2 PAGE = 1
% PROCESS{ *NOUPLIST,NOSTHT,NOATR,MOXREF!) ;5
/% %/ SPS01600
1 $SPANTRE :.PROC($A,$8)3 SPS01650
1% %/ SPS01700
2 $ DCL (Ay8,EMPT) GRAPH; SPS01750
3 DCL POINT BIN FIXED; . SPS01800
4 $ IF A--~= CONT THEN GO TO NOSPAN; $PS01850
5 POINT=13POINTIA)~15 SPS01900
6 s 00 AlIyJ)5 | SPS01950
7 s B=B+B(I44) 3 S$P502000
8 $ IF B=CYCL THEN § B=B-8(1,J); S$PS02050
9 IF IALINE(B)=POINT THEN $ RETURN} S$PS02100
10 s END 3 §PS02150
11 NOSPAN 3 PUT EDIT ('NO SPANNING TREEt) {$KIP({1),COL{15),A)} $PS0220C
12 $ B=EMPT3 $P§02250
13 $ END SPANTRE;) $Ps02300
Step 1, Choose any line Fig. 6, GPL/I source list
u of A and delete u from A,
Step 2. Add uto B and bs LIST DF GRAPH %
GRAPH-NAME = TREE GRAPH-TYPE = SIMPLE GRAPH
look at the graph B. If B POINT NUMBER = 11
1 2 7 10 6 8 3 9 4 5 11
has a cycle, then delete u LINE NUMBER = 10
T - 2 1 -7 1-10 1- 6 2~ 8 2= 3
from B, 3- 9 3- 4 PR 411
Step 3. If B now contains . Fig.7. Output format for graph(spanning tree)

P-1 lines (where P is the number of points contained in the original A), the algo-
rithm terminates. Otherwise, go back to Step 1,

The source program and the result on graph A shown in Fig,5 are presented in

87
Fig.6 and 7, respectively.

5. CONCLUSION

The language described in this paper is designed for simple operation on
graphs (simple, multiple, nondirected and directed) such as complement, sum,
difference and intersection between graphs and addﬁion or deletion of points or
lines etc. The followings are the characteristics of this language.

(1) It is possible to handle graphs as one type of data.

(2) PL/I cc;mpensates the defect of GPL/I because this contains PL/I
language completely.

{(3) The function of dynamic allocation of memories and the internal represen-
tation of graphs by one-directional lists reduce the size of region of memories and
increase the speed of execution of programs.

(4) A program written in this language is shortened to three quarters com- .
pared with a program written in PL/I,

Therefore, this language may be considered a very useful toPl to solve graphical

problems.

ACKNOWLEDGMENT
I wish to thank Dr. J. Baba of Mitsubishi Electric Corp. for many helpful sug-

gestions during the course of this work.

REFERENCES
(1) B. G. Busacker, T, L. Saaty: Finite Graphs and Networks; An introduction
with applications, McGraw-Hill, New York, 1965,
(2) R. C. Read etal.: The Application of Digital Computer Techniques to the
Study of Graph- Theoretical and Related Combinatorial Problems, Scientific
Report No, UWI/CC 12, University of West Indies, 1969.
(3) S. Crespi-Reghizzi et al.: A Language for Treating Graphs, Comm. A, C.
M. Vol.13 No.5, May 1970, 319-323.
{4) T. W. Pratt etal.: A Language Extension for Graph Processing and Its

Formal Semantics, Comm. A. C. M. Vol.14 No, 7, July 1971, 460-467

88
(5) D. P. Friedman et al.: GRASPEL 5, A Graph Processor and Its Applications,

Report R81-69, University of Houston, August 1969,

{6) C. Berge: The Theory of Graphs and Applications, John Wiley & Sons Inc.,
New York, 1966.

(7) F. Harary: Graph Theory, Addison Wesly, Massachusetts, 1969,

(8) I. B, M. : IBM System/360 PL/I Reference Manual, C 28-8201-1

(9) E. C. Ogbuobiri et al.: Sparsity Directed Decomposition for Gaussian
Elimination on Matrices, I, E.E.E. Trans. Power Appr. Sys. Vol.1 PAS 89,

No.1l, January 1970, 141,

