A Method for Analyzing Operating Systems "

utilizing Network Representation

 Akio Komatsu*, Shigeru Motobayashi* and Nobumasa Takahashi*

1. INTRODUCTION

In this paper we will introduce a method for analyzing and evaluat-
ing operating systems. This method is applicable not only to operating
systems, but also to all other software systems: compilers, user
programs, etc. The characteristics of this method are: 1) An operating
system is modeled in terms of a set of paths (a path is a chain of nodes
representing program moduleé). 2) A technique like one of those used in
OR (Operations Research) is applied to this model in order to analyze
and evaluate the performance of the operating system.

Based on this idea a program named OS-Analyzer has been developed.
The OS-Analyzer consists of the following three phases: 1) static
analysis of the structure of the operating system by simply scanning the
source program, 2) dynamic analysis and network modeling of the control
transitions among the modules using the data obtained by address-tracing,
3) evaluation and simulation of the program behavior by manipulating the
model in conversational mode. Structural and functional features,
bottlenecks, and the effect of improving a module can be clarified based
on the results of these analyses.

In this paper we will also describe some of the results obtained by
application of the OS-Analyzer to MCP (Master Control Program: the
resident parf of the operating system for HITAC 5020 TSSl)).

2. PROGRAM MODELS '

2.1 Network Modeling

The theory of networks provides a useful model for a variety of
physical phenomena in traffic, communication, transportation and activity

networks2). Activity networks, as exemplified by PERT and CPM,‘form a

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 13, No.12 (1972), pp. 810~ 817.
* Central Research Laboratory, Hitachi, Ltd.,
Kokubunji, Tokyo, Japan

74
special category of networks, and the algebra proposed for analyzing

them is limited to only the temporal (i.e., scheduling) relationships
among events.

Elmaghraby [2] has generalized the approach of activity networks to
networks in which activities and events occur probabilistically and con-
tain more complicated relationships. GERTB) (Graphical Evaluation and
Review Technique) is a procedure for analyzing such generalized networks,
i.e. stochastic networks composed of EXCLUSIVE—OR, INCLUSIVE~OR and AND
nodes, and multiparameter branches.

. For the purpose of analyzing and evaluating software systems, we
will introduce two types of networks.

At first we will consider a network similar to an ordinsry control
flow chart of a program, and call this type of network SNF (Static Net-
work Flow). An example of an SNF is shown in Fig. 1. 'Static' implies
that an arc in an SNF implicates only
the possibility of control transi- o
tion between two modules (nodes).

Since a node represents a program

module, a path, i.e. a chain of A \fl/ G

nodes, represents a history of Circles (nodes) represent each program modules,
and arrows (arcs) represent intermodule trans-

control transitions among modules. mission of control. A path is a chain of nodes.
(e. g. ABACE)

In an operating system, for Fig. 1 Networkflow representation of a program
example, a history of intermodule

transitions caused by processing a SVC (Supervisor Call) corresponds to
one path, and a course of processing an interruption corresponds to
another. In other words, there is one-to-one correspondence between a
path and a processing. So a set of paths, each weighted by the frequen-
cy of its occurrence, representé a behavior or a workload of the operat-
ing system modeled. We call this set of weighted paths DNF (Dynamic
Network Flow). It is evident that a DNF includes more information than
a stochastic network in the sense that we can derive a corresponding
stochastic network from g DNF.

2.2 Information Needed for Modeling

Now we will explain the kind of information that is necessary for

75
modeling an operating system. The OS-Analyzer refers to the following

three tables when constructing an SNF and a DNF.
(1) Division Table

The Division Table is used to divide an operating system into a
number of program modules by specifying the address range of each module.
An entry in the table consists of & module name and the first and the
last addresses of the program module.
(2) Combination Table

The Combination Table is used to increase flexibility in dividing
an operating system into its functional units. By méking use of
this table we can define a new module which consists of a set of modules
defined in the Division Table.
(3) Instruction Table

In & table called Instruction Table, a set of instructions and each
instruction execution time are defined. Based on this table, the run-
ning time of each module or path can be calculated.

3. STRUCTURE OF THE OS-ANATLYZER

The conceptual figure of the OS-Analyzer is shown in Figure 2. The
0S-Analyzer consists of three phases, each of which is described in this

section.

Source ram Combination Instruction
o o8 Division Tab. e Teb. Tab.

s -
‘I a S At e~ ABt A+B Lot oty
:ﬂ ~==""1B: by~ by . . ST : tg
! 8 (-1 B t3
b - // H .
Cy " A . .

c Plalve
C2 L2 7
dy 7, l j I

o) 7/
ds / //
& e -\- L, 0§ - Analyzer
o2 \ Phase 1

y Phase 3

Result from

Phase 1 and 2 Phase 3

Phase ?2
/ ‘
Q Result from / \

data obtained vy
from address tracer AB

Fig. 2 Conceptual figure of OS-Analyzer

76
3.1 Static Analysis (Phase 1)

Static analysis is done in Phase 1 using the source program of an
operating system and the three tables mentioned in section 2.2. We can
obtain the following data through Phase 1.

(1) TInformation about an SNF

We can clarify static intermodule connections and draw an SNF which
represents the structural features of the operating system.
(2) Frequency of each instruction appeared

The frequency of each instruction appeared in the source program of
the operating system is counted.

3.2 Dynamic Analysis (Phase 2)

Dynamic analysis is done in Phase 2 using actual data obtained from
address tracing, and a DNF is constructed as a more detailed model re-
presenting the structural and functional features of an operating system.
The output from Phase 2 is listed below.

(1) A sequence of paths

A sequence of paths ordered by their occurrences means a sequence
of requests made to the operating system. Based on this sequence, we can
analyze the workload on the operating system. From this information we
can count the frequency of each path and construct a DNF, i.e. a set of
paths weighted by the frequency of their occurrence.

(2) Execution time of each path

The execution time of a path means the processing time needed for
the accomplishmént of a corresponding function of an operating system.
(3) Average execution time and frequency.of use of each node

From these data we can find the program modules which are often
used or which need longer elapsed time to process their function.

(4) Intermodule control transition ratio

Together with the averdge execution time of each node, intermoduie
control transition ratio can be utilized to construct a stochastic
network.

(5) Frequency of occurrence of each instruction
Based on the frequency count of each instruction we can calculate

an OS-mix, i.e. an instruction mix in the operating system.

77
3.3 Evaluation and Simulation (Phase 3)

A DNF obtained in Phase 2 can be regarded as a kind of X-ray photo-
graph of an operating system, reflecting its behavior as well as its
structure. In Phase 3, various kinds of evaluation and simulation can
be performed as directed using the following commands in conversational
mode under HITAC 5020 TS8S.

GRAPH: displays the intermodule transition ratio.

TOTAL/PATH/MODULE: displays the statistics on the DNF/paths/modules.
DESCEND: displays the names of all succeeding modules in paths.
SUBPATH: finds the specified chain of modules in paths.

SEARCH: finds modules which have high improvement ratio.

UPDATE: wupdates the internal data such as weights of paths.

COM: combines a number of modules into one module.

END: terminates the procéss of Phase 3.

Using these commands we can evaluate and simulate the effect of
the changes in workload, execution steps of program modules, etc., on
the performance of the operating system. Furthermore we can find
bottlenecks or modules of high improvement ratio.

The improvement ratio is defined as follows. Let Mik be an average
execution time of the k-th module in the i-th path, Pi (execution time
of the i-th path) can be calculated such that Pi = é Mik'
Let Wi be the weight, i.e. the frequency of occurrence of the i-th path,
E (the expectation of the execution time of a path) can be calculated

such that

i i
E=EPiXWi/ZWi
Now suppose that E changes to E’ according as Mik changes to Mik"
We define the two improvement ratios as follows.

Improvement ratio of a module: MI = (Mik - My) X lOO/Mik

It

Improvement ratio of a system: I (E - BE”) X 100/E

4. RESULTS
We have applied the OS-Analyzer to MCP (Master Control Program)
5)

using the data obtained by the address tracing Some of the results’

are described in this section.

78
We divided MCP, which is about 8K words (32 bits/word) in size,

into 250 modules. Among these modules, 137 modules appeared in the
trace-data. (The others are special modules used exceptionally when
abnormal situations occur.) There were 343 arcs in the DNF of MCP.

The ratio of the number of arcs to the number of nodes can be considered
to be an index to the complexity of program structure.

In the trace data about 90 different paths appeared. The paths
associated with the processing of the missing-page faults and drum chan-
nel interruptions, occupied 60% of the total frequency of all the paths.
Dynaiic steps needed for processing missing page faults ranged from 500
to 2000. We can clarify the behavior of an operating system for time-
sharing systems utilizing segmentation and paging mechanisms through the
detailed analysis of these paths.

Figure 3 shows useful data concerning the improvement ratios defined
in 3.3. From this data we can expect that the decrease of 3 dynamic
steps (10%) in a module named

'SCHDL' will result in the (30 steps)

10 /
i /
AZ’I.S)
/

decrease of about 1% in a

average execution time of g

é§r

path. Furthermore, if we can
halve the dynamic steps of the

'SCHDL' and the 'RTN' respective-

ly, the improvement ratio will be

over 8%. These statistics are

1mprovement ratio of a system (%)

probably open to various inter- 10 50 100
improvement ratio of a module (%)

'SCHDL' and 'RIN' represent
particular program module names,

pretations, however, the advan-
tage of utilizing quantitative
L . Fig. 3 Change of improvement ratio

analysis in improving a program of a system by improving
average time of a module

module is not to be taken lightly.

Analyses of other results, such as the ratio of user time to OS
time, instruction mix in OS and so on, have been omitted in this paper.
5. CONCLUSION

In this paper we have described a method for analyzing and evaluat-

ing operating systems utilizing network representation. The 0S-Analyzer

79
has proved to be a useful tool in analyzing and evaluating operating

systems through experiments. ‘The OS-Analyzer is a general procedure for

systematic analysis of the data obtained by address tracing. Since the

results obtained by analyzing MCP (Master Control Program) through the
0S-Analyzer were not so different from the ones obtained by another
method such as software monitoring, we can coﬁclude that the method pre-
sented here is applicable to a wide range of software systems.

ACKNOWLEDGEMENT

We would like to express our appreciation to Messrs. T. Masuda,

Y. Yoshizawa and T. Hirosawa for valuable discussions, to our

department manager Dr. T. Tagami for‘his support in this work, and to

Dr. 8. Shimada for his kind interest in this work.

REFERENCES

1. Motobayashi, S., Masuda, T. and Takahashi, N., "The HITAC 5020 Time
Sharing System," Proc. ACM. 24th, Nat. Conf., 1969, pp. 419-430.

2. Elmaghraby, S. E., "An Algebra for the Analysis of Genefalized
Activity Networks," Management Science, Vol. 10, No. 3, 1964.

3. Pritsker, A. A. B. and Harp, W. W., "GERT: Graphical Evaluation and
Review Technique: Part I. Fundamentals," The Journal of Industrial
Engineering, Vol. XVII, No. 5, May, 1966.

4. Beizer, B., "Analytical Techniques for the Statistical Evaluation of
Program Running Time," FJCC, 1970, pp. 519-524.

5. Masuda, T., Yashizawa, Y., Hirosawa, T. and Takahashi, N., "System
Data and its Evaluation of Time Sharing System with Virtual Memory

Concept," Proc. IEEE Conf. of Mexico Region, Jan., 1971.

