Optimal Multipliers for the Spectral Test of Uniform Random Number Generators ### Norio HARADA* #### 1. INTRODUCTION In the monte carlo method, generating a reliable random number sequence is required. One of the prevailing methods of uniform random number generation is the linear congruential method, which includes the mixed ($c \neq 0$) and multiplicative (c = 0) congruential methods: $$x_n = a x_{n-1} + c \mod m, \tag{1}$$ where a, c and m are integers. We shall consider the case of multipliers giving the maximum possible periods for the mixed and multiplicative methods. R.R. Coveyou and R.D. MacPherson (2) have proposed the so-called spectral test for this method. In this paper, an algorithm of finding suitable multipliers for spectral test of Eq.(1) with $m=2^{\ell}$ and 10^{ℓ} and samples of these multipliers given by this algorithm will be shown in the following tables. These multipliers are available for practical generation of uniform random number. Before going into the main argument, the spectral test will be briefly introduced. The spectral test claims that the magnitude of the following ν_k corresponds to good randomness of sequence generated by Eq.(1). $$\nu_{k}^{2} = \min (S_{0}^{2} + S_{1}^{2} + ... + S_{k-1}^{2})$$ (2) $$S_0 + S_1 a + \dots + S_{k-1} a^{k-1} \equiv 0 \mod h,$$ (3) where h is determined by both m and whether c is equal to zero or not. Here, modulo h in Eq.(3) is as follows: (i) When m = 2^{ℓ} and c = 0, if a \equiv -3 mod 8, h is equal to $2^{\ell-2}$ and, if a = 3 mod 8, h is equal to $2^{\ell-3}$; (ii) When m = 10^{ℓ} and c = 0, h is equal to $10^{\ell}/80$; (iii) When c \neq 0, h is equal to m. D.E. Knuth (3) have proposed the following C_k instead of ν_k : $$C_{k} = \pi^{k/2} \nu_{k}^{k} / ((k/2)!h)$$ (4) In this paper, both u_k and C_k will be used for spectral test results. This paper first appeared in Japanese in Joho-Shori (Journal of the Information Processing Society of Japan), Vol. 15, No. 3 (1974), pp. 180~188. ^{*} Central Research Laboratories, Nippon Electric Company, Limited, Kawasaki, Japan. #### 2. OPTIMAL MULTIPLIER In accordance with the spectral test, the multiplier corresponds to the vector $\nu = (\nu_2, \nu_3, \dots, \nu_k, \dots)$. By means of this correspondence the set of multipliers can be ordered. However, since this order is not linear, it is difficult to find a multiplier with large ${}^{\nu}{}_{k}$. Generally speaking, the influence of small ${}^{\nu}{}_{k}$ on the randomness of sequence by Eq.(1) is greater as k becomes smaller. Accordingly, it is reasonable to order the previous set lexicographically; that is, if $\nu_2 = \nu_2$,, $\nu_{k-1} = \nu'_{k-1}$ and $\nu_k > \nu'_k$, $\nu = (\nu_2, \dots, \nu_k, \dots)$ will be superior to $\nu' = (\nu_2, \nu_3, \dots, \nu_k, \dots)$ $..., \nu'_k, ...$). This ordered set is linear. On the other hand, the inequality $\nu_k^2 \leq$ $(4/r_k^{k/2})$ D^{1/k} is well known; where r_k is the volume of a n-dimensional unit sphere and D is the determinant of the quadratic form deduced by Eqs. (2) and (3). In particular, $D = h^2((2))$. For example, the upper bound of C_2 is equal to 3.63. There is a maximum element in the ordered set. Conveniently, multiplier a with the maximum period will be called optimal for spectral test of Eq.(1) if the multiplier is very close to the maximum, and other ν_k (k = 3,4,...) are acceptable. There are superior multipliers which are not optimal. For example, when c = 0 and $m = 10^{11}$, a multiplier a = 39 406 980 001 has $C_2 = 3.627$, but $C_3 = 9.629 \times 10^{-3}$, $C_4 = 1.973 \times 10^{-3}$ 10^{-8} , and $C_5 = 1.579 \times 10^{-8}$. #### ALGORITHM An algorithm for finding the optimal multipliers will be considered. Conventionally, notations -a, a^{-1} and $-a^{-1}$ (mod h) imply the following integers a', a'' and a''' respectively, where $a + a ' \equiv 0$, $aa'' \equiv 1$ and $aa''' \equiv -1$ mod h. These are defined as class a here. ### 3.1 Basic Algorithm [Proposition 1] The values ν_k of Eq.(2) are the same among a, -a, a⁻¹ and a⁻¹. An optimal multiplier a gives a pair of integers (n_1,n_2) with large ν_2^2 , where $\nu_2^2 = n_1^2 + n_2^2$, and $n_1 a \equiv n_2 \mod n$. (5) By inverse correspondence, a pair (n_1, n_2) with large $n_1^2 + n_2^2$ will determine a multiplier with large ν_2 under the following conditions: (1) There is at least one multiplier with maximum period length in the class. (2) A pair (n_1, n_2) gives a multiplier a with $\nu_2^2 = n_1^2 + n_2^2$; that is, the value $n_1^2 + n_2^2$ is minimum among all pairs (n_1', n_2') with solution a of Eq.(5). In order to make it practical to determine superior multipliers in the above ordered set, it is sufficient to search for a pair (n_1, n_2) with large $n_1^2 + n_2^2$ which satisfy conditions (1) and (2) in the range of $T_2h/2 \le n_1^2 \le T_2h$ and $n_2^2 \le T_2h - n_1^2$ where $T_2 = 4/\gamma_2$. 3.2 Period Length of -a, a^{-1} and $-a^{-1}$. Whether -a, a^{-1} and $-a^{-1}$ give the maximum period length or not for multiplier a with maximum period length is discussed. (Proposition 2) (m = 2^{ℓ} , $\ell \ge 5$) If multiplier a for the multiplicative congruential method with m = 2^{ℓ} ($\ell \ge 5$) gives the period of maximum length, integers -a, a^{-1} and $-a^{-1}$ mod h (= $2^{\ell-2}$) give maximum length. In the case of a mixed congruential method, integer a^{-1} mod h (= m) alone has the maximum length of period. (Proposition 3) Let p be a prime number of $p \equiv 1 \mod 4$. If a gives the maximum period for the multiplicative method with $m = p \ell$; namely if a is a primitive root modulo $p \ell$, then integers -a, a^{-1} and $-a^{-1}$ also give the maximum period. Prop. 3 implies that, if a multiplier a of multiplicative method with $m=10 \, \ell$ gives the maximum period length both for multiplicative methods with $m=2 \, \ell$ and with $m=5 \, \ell$, integers -a, a^{-1} and $-a^{-1}$ mod h also give the maximum length for the multiplicative method with $m=10 \, \ell$. In the case of mixed congruential method with $m=10 \, \ell$, only a^{-1} mod $10 \, \ell$ gives the maximum period, as in Prop. 2. # 3.3 Choice of (n_1, n_2) In accordance with condition (1) in 3.1, some of the class of a, which is a solution of Eq.(5) with (n_1, n_2) , needs to give the maximum period length. The following propositions give the means to choose such pairs. By Prop. 1 integers n_1 and n_2 may be restricted to positive integers such that $n_1 \ge n_2$. (Proposition 4) (m = 2ℓ , $\ell \ge 5$) Let n_1 be odd. In the case of the multiplicative method for m = 2ℓ , all of the class of solution a in Eq.(5) with (n_1, n_2) have the maximum period length, if and only if $3 n_1 \pm n_2 \equiv 0 \mod 8$. And, in the case of mixed congruential method for m = 2ℓ , there are the multipliers giving the maximum period in the class of solution a of Eq.(5), if and only if $n_1 \equiv n_2 \mod 4$ or $3n_1 \equiv n_2 \mod 4$. (Proposition 5) (m = 5ℓ , $\ell \ge 3$) Let n_1 and n_2 be prime to 5 and h be 5ℓ -1, then solution a of Eq.(5) with (n_1, n_2) gives the maximum period length for multiplicative method with m = 5ℓ , if and only if (i) $2n_1 \equiv n_2 \mod 5$ and $7n_1 \not\equiv n_2 \mod 25$, or (ii) $3n_1 \equiv n_2 \mod 5$ and $18n_1 \not\equiv n_2 \mod 25$. By propositions 4 and 5, a pair of integers (n_1, n_2) with maximum period length can be chosen, for multiplicative method with $m = 10 \ell$. For mixed congruential method, Table 1. Optimal Multipliers of the Multiplicative and the Mixed Congruential Methods for m = 2ℓ | | - | | | | | | | | |----|-----|---------------------------------|----------------------------------|-------------------|-----------------------------|---|--------------------------------|-----------------------| | ı | No. | a, -a, a-1 | and -a-1 | n ₁ | C ₂ | ^C 3
ν ² 3 | C ₄ | C ₅
ν 2 | | | | | | ⁿ 2 | ν ² ₂ | [*] 3 | 4 | ν ₅ | | 28 | 1 | 9,393,885
134,139,531 | 259,041,571
134,295,925 | 12,859
12,015 | 3.624691
309,714,106 | 3,008053
333,510 | 1.723 2 97
9,682 | 1,992945
1,594 | | | 2 | 473,485
1,028,421 | 267,961,971
267,407,035 | 17,575
261 | 3.615733
308,948,746 | 3.387454
361,202 | 3.169271
13,130 | 1.142182
1,272 | | | 3 | 52,645,187
95,901,845 | 215,790,269
172,533,611 | 17,571
599 | 3,617490
309,098,842 | 3,855692
393,454 | 2.526000
11,722 | 3.480404
1,986 | | 29 | 1 | 48,148,485
216,177,869 | 488,722,427
320,693,043 | 24,553
3,981 | 3.620419
618,698,170 | 2.776921
501,994 | 4.239422
21,476 | 1.906482
2,056 | | | 2 | 9,665,363
240,877,349 | 527,205,549
295,993,563 | 24,829
263 | 3.607839
616,548,410 | 2.782519
503,006 | 3.586823
19,754 | 1.825337
2,034 | | | 3 | 297,823,829
55,647,997 | 239,047,083
481,222,915 | 24,799
1,013 | 3.604727
616,016,570 | 2,427466
458,886 | 3.751359
20,202 | 1.344807
1,786 | | 30 | 1 | 421,954,837
401,580,605 | 651,786,987
672,161,219 | 35,137
1,877 | 3,622571
1,238,131,898 | 2,272482
697,630 | 3.738779
28,522 | 3,085132
3,294 | | | 2 | 144,014,819
380,437,365 | 929,527,005
693,304,459 | 35,135
1,891 | 3,622314
1,238,044,106 | 3.528237
935,282 | 3.791397
28,722 | 2,668940
3,118 | | | 3 | 149,946,277
91,041,747 | 923,795,547
982,700,077 | 34,637
6,239 | 3.624078
1,238,646,890 | 4.240019
1,057,270 | 2,383683
22,774 | 3.055234
3,278 | | 31 | 1 | 501,658,075
790,371,757 | 1,645,825,573
1,357,111,891 | 48,377
11,773 | 3.626483
2,478,937,658 | 2,889877
1,299,618 | 4.926510
46,302 | 4.695305
5,158 | | | 2 | 1,030,999,283
502,125,509 | 1,116,484,365
1,645,358,139 | 49,765
479 | 3,623333
2,476,784,666 | 3,646602
1,517,466 | 4,347889
43,498 | 5.765088
5,600 | | | 3 | 211,325,547
275,548,739 | 1,936,158,101
1,871,934,909 | 49,753
717 | 3,622002
2,475,875,098 | 3,428454
1,456,238 | 2.563804
33,402 | 4.452302
5,058 | | 32 | 1 | 1,542,272,173
1,779,322,661 | 2,752,695,123
2,515,644,635 | 62,603
32,239 | 3,626931
4,958,488,730 | 2.313115
1,777,922 | 3.641630
56,298 | 3.985889
6,376 | | | 2 | 252,989,245
1,174,634,517 | 4,041,978,051
3,120,332,779 | 62,407
32,619 | 3.627037
4,958,632,810 | 2,2 8 96 2 8
1,766,490 | 5.409544
68,616 | 1,673156
4,514 | | | 3 | 82,981,853
613,987,493 | 4,211,985,443
3,680,977,803 | 70,339
2,903 | 3.625113
4,956,002,330 | 2.053435
1,642,344 | 2,426367
45,954 | 2.810931
5,530 | | 33 | 1 | 2,541,166,357
1,630,717,891 | 6,048,768,235
6,959,216,701 | 96,491
24,647 | 3,627301
9,917,987,690 | 3,100926
3,431,762 | 2,311515
63,432 | 2.719715
7,226 | | | 2 | 4,173,311,477
2,286,409,309 | 4,416,623,115
6,303,525,283 | 77,281
62,805 | 3.626874
9,916,820,986 | 2.961650
3,327,914 | 3.313870
75,950 | 3.588125
8,066 | | | 3 | 4,910,439,405
4,210,506,213 | 3,679,495,187
4,379,428,379 | 99,183
8,899 | 3.626742
9,916,459,690 | 2.939488
3,312,086 | 2,761674
69,334 | 3.367617
7,858 | | 34 | 1 | 10,886,875,915
231,118,685 | 6,292,993,269
16,948,750,499 | 140,797
223 | 3.625083
19,823,844,938 | 3,399898
5,793,234 | 4.027690
118,414 | 1.963465
8,346 | | • | 2 | 9,690,319,547
713,501,299 | 7,489,549,637
16,466,367,885 | 140,771
2,769 | 3.625137
19,824,141,802 | 3,445112
5,843,570 | 4,352631
123,098 | 4.113375
11,254 | | | 3 | 8,757,277,133
1,088,888,059 | 8,422,592,051
16,090,981,125 | 135,977
36,651 | 3.626764
19,833,040,330 | 3.952346
6,404,630 | 2.839095
99,418 | 1.501810
7,506 | | 35 | 1 | 191,889,139
4,965,381,573 | 34,167,849,229
29,394,356,795 | 198,757
11,743 | 3,624585
39,642,243,098 | 3,396795
9,189,702 | 3.123906
147,482 | 2.349584
11,862 | | | 2 | 1,497,111,427
6,202,832,085 | 32,862,626,941
28,156,906,283 | 198,271
18,435 | 3,625407
39,651,238,666 | 2.672721
7,832,710 | 4.396101
174,954 | 1.865937
10,822 | | | 3 | 2,171,136,891
10,112,089,011 | 32,188,601,477
24,247,649,357 | 199,103
965 | 3,624648
39,642,935,834 | 3,141030
8,722,136 | 4.138467
169,750 | 1.738998
10,498 | | 36 | 1 | 924,804,611
31,268,211,541 | 67,794,672,125
37,451,265,195 | 281,475
5,257 | 3.623274
79,255,811,674 | 3.407560
14,618,974 | 5.538414
277,714 | 2.832606
16,866 | | | 2 | 267,305,339
26,431,255,987 | 68,452,171,397
42,288,220,749 | 274,821
61,465 | 3,625501
79,304,528,266 | 5.092510
19,109,222 | 2.619017
190,974 | 5.009184
21,164 | | | 3 | 822,459,541
33,250,529,603 | 67,897,017,195
35,468,947,133 | 274,223
64,091 | 3.625564
79,305,910,010 | 2.771353
12,739,034 | 2.115173
171,624 | 5.014866
21,176 | | ı | No. | a, -a, a-1 and -a-1 | n ₁ | C ₂ | C ₃ | C ₄ | C ₅ | |---|-----|---------------------|-----------------|----------------|----------------|----------------|----------------| | | | • | ¹¹ 2 | ν ₂ | ² 3 | 4 | - 5 | | | | | | | | | | Table 2. Optimal Multipliers of the Multiplicative Congruential Method for $m=10\ell$ | e | No. | a, -a, a ⁻¹ and -a ⁻¹ | | ⁿ 1 | С ₂
, 2
, 2 | C ₃
2
2
3 | C ₄
v ² ₄ | C ₅
₂ 2
₅ | |----|-----|---|-------------------------------------|-----------------|------------------------------|-------------------------------|---|--| | 9 | 1 | 1,199,947
2,554,717 | 11,300,053
9,945,283 | 3,771
137 | 3.578704
14,239,210 | 3.369685
46,554 | 2,228705
2,376 | 2.479804
506 | | | 2 | 859,187
1,360,123 | 11,640,813
11,139,877 | 3,739
193 | 3.522949
14,017,370 | 2.05 6 926
33,542 | 2.463455
2,498 | 1,347530
400 | | | 3 | 6,356,227
3,594,837 | 6,143,773
8,905,163 | 2,883
2,441 | 3.586485
14,270,170 | 2.430725
37,390 | 4.012327
3,188 | 2.116737
478 | | 10 | 1 | 16,773,403
12,194,067 | 108,226,597
112,805,933 | 11,633
2,901 | 3.612643
143,742,490 | 4.656932
268,282 | 2.334600
7,690 | 3.364403
1,450 | | | 2 | 5,926,213
4,603,277 | 119,073,787
120,3 9 6,723 | 11,601
2,987 | 3,606683
143,505,370 | 3.152602
206,766 | 3.199173
9,002 | 5.293342
1,730 | | | 3 | 37,063,427
27,288,363 | 87,936,573
97,711,637 | 9,649
7,123 | 3.615102
143,840,330 | 3.493584
221,346 | 5.804902
12,126 | 2.839604
1,350 | | 11 | 1 | 383,889,197
63,914,533 | 866,110,803
1,186,085,467 | 37,869
1,193 | 3,607766
1,435,484,410 | 2.489215
819,890 | 2.277748
24,020 | 4.403125
4,042 | | | 2 | 346,853,627
134,704,563 | 903,146,373
1,115,295,437 | 37,869
863 | 3.606061
1,434,805,930 | 2.250798
766,750 | 4.836659
35,002 | 2.770516
3,368 | | | ·3 | 362,235,997
10,470,667 | 887,764,003
1,239,529,333 | 37,831
2,507 | 3,612755
1,437,469,610 | 3.267553
982,952 | 2.146188
23,316 | 3.722581
3,776 | the pair (n_1, n_2) such that $n_1 \equiv \pm n_2 \mod 20$ give the solution with the period of maximum length. # 4. EXAMPLE OF OPTIMAL MULTIPLIERS In this section, a part of the optimal multipliers given by the previous algorithm for a short word length is shown in the form of tables as an example. Generally, many of these multipliers have better values of Ck than usual multipliers. For instance, multiplier a = 5^{11} of the multiplicative method with m = 2^{30} has ν = (2.44, 0.18, 1.43, 2.74). In the tables, n_1 and n_2 are defined in Eq.(5). The upper rows correspond to C_k (k=2, 3, 4, 5) and the lower rows correspond to ν_k^2 (k=2, 3, 4, 5). 4.1 Optimal Multipliers for $m = 2\ell$. Table 1 shows optimal multipliers of the multiplicative and the mixed method for $m = 2^{\ell}$. For each method, usage of Table 1 is as follows. # (1) Multiplicative Congruential Method Usage (c = 0) For multiplier a with a $\equiv -3 \mod 8$, modulo h of Eq.(3) is equal to $m/4 = 2^{\ell-2}$. The element with a \equiv -3 mod 8 in the rows of exponent ℓ -2 in Table 1 can be regarded as candidates of multipliers for $m = 2^{\ell}$. For instance, when $m = 2^{30}$, multipliers $a = 9 393 885, 134 295 925 in No. 1 of <math>\ell = 2^{28}$ may be optimal. By the following proposition the number of optimal multipliers from Table 1 can be increased. (Proposition 6) For multiplier a with $a = -3 \mod 8$ in the multiplicative method with m = 2^{ℓ} , all of a + h, a + 2h and a + 3h (< m) have the same C_{k} and ν_{k} as the 297,086 17,126 | ı | No. | aa. a | -1 and -a-1 | n ₁ | с ₂ | c ₃ | c ₄ | с ₅ | |-----|-----|----------------------------------|----------------------------------|-------------------|-----------------------------|---------------------------------|-----------------------|--------------------| | | ' | | | ⁿ 2 | ν <mark>2</mark>
2 | ν ² 3 | ν <mark>2</mark>
4 | ν ₅ 2 | | 9 | 1 | 558,283,119
46,894,479 | 441,716,881
953,105,521 | 33,689
4,009 | 3.616038
1,151,020,802 | 2.290343
668,434 | 3.684868
27,326 | 2.807232
3,086 | | | 2 | 242,150,619
262,576,979 | 757,849,381
737,423,021 | 31,563
12,503 | 3,620836
1,152,547,978 | 4.558907
1,057,686 | 3.898233
28,106 | 3.623983
3,416 | | | 3 | 247,830,821
249,233,581 | 752,169,179
750,766,419 | 30,311
15,331 | 3.624758
1,153,796,282 | 2.50864 9
710,434 | 2,436013
22,218 | 4.707606
3,798 | | 10 | 1 | 1,394,095,879
3,511,297,719 | 8,605,904,121
6,488,702,281 | 107,281
5,001 | 3.623583
11,534,222,962 | 2.295218
3,108,014 | 3.178836
80,260 | 2.058406
6,864 | | | 2 | 86,166,859
3,008,957,539 | 9,913,833,141
6,991,042,461 | 101,199
36,059 | 3.625866
11,541,489,082 | 3.037579
3,745,706 | 3.913602
89,054 | 1.632700
6,266 | | | 3 | 4,774,503,099
3,575,113,101 | 5,225,496,901
6,424,886,899 | 89,203
59,903 | 3.627140
11,545,544,618 | 2.876350
3,612,194 | 4.485030
95,334 | 5.449092
10,124 | | 11 | 1 | 30,125,003,319
28,579,353,721 | 69,874,996,681
71,420,646,279 | 338,951
21,631 | 3,624006
115,355,680,562 | 3.939190
20,677,494 | 3.351598
260,610 | 5.105261
24,776 | | | 2 | 58,109,090,481
30,750,307,921 | 41,890,909,519
69,249,692,079 | 339,773
813 | 3.626854
115,446,352,498 | 2.874097
16,759,650 | 4.196205
291,604 | 2.397395
18,300 | | - 1 | 3 | 35,234,957,619 | 64.765.042.381 | 339,657 | 3,624703 | 3,705684 | 4,355461 | 2.022468 | Table 3. Optimal Multipliers of the Mixed Congruential Method for m = 10ℓ multiplier of a. Prop. 6 implies that, if a is optimal, the above integers are also optimal. For instance, the integer a + h = 134 295 925 + 268 435 456 = 402 731 381 also is optimal. There are 2 × 4 × 3 = 24 candidates of multipliers with a = -3 mod 8 for one exponent ℓ in Table 1. When a \equiv 3 mod 8, h is equal to $2^{\ell-3}$. In this case, the rows of exponent ℓ -3 in Table 1 can be used. 115,377,880,138 3,317 ### (2) Mixed Congruential Method Usage ($c \neq 0$) In this case, h is equal to m. Multipliers with $a \equiv 1 \mod 4$ in Table 1 are the optimal multipliers for mixed congruential method. For example, when $m = 2^{30}$, multiplier a = 162 435 333 has the maximum period legath but a = 911 306 491 does not have maximum period length. In this way, the $2 \times 3 = 6$ multipliers can be obtained from Table 1. - 4.2 Optimal Multipliers for $m = 10\ell$. - (1) Multiplicative Congruential Method Usage (c = 0) In this case, h is equal to $10^{\ell}/80$. Table 2 shows multipliers given by the above algorithm under modulo $h = 10^{\ell}/80$. If multiplier a satisfies the following condition: $a \equiv \pm 3 \mod 8$, $a \equiv 2$, 3 mod 5 and $a^4 \not\equiv 1 \mod 25$, multiplier a has the period of maximum length modulo 10^{ℓ} . Similar to Prop. 6, integers a + sh, where s is the integers such that 0 < a + sh < m, have the same ν_k as a. If a is optimal, integers a + sh also are optimal. For instance, multiplier a = 120 396 723 from No. 2, $\ell = 10$ of Table 2 is optimal. Therefore, $a + h = 120\ 396\ 723 + 125\ 000\ 000 = 245\ 396\ 723$ also is an optimal multiplier. In this way, a lot of optimal multipliers can be obtained from Table 2. (2) Mixed Congruential Method Usage ($c \neq 0$) Table 3 shows optimal multipliers for the mixed congruential method with $m = 10^{\ell}$. In this case, multiplier a with $a \equiv 1 \pmod{20}$ gives the maximum period length. For example, a multiplier a = 757 849 381 from No. 2, $\ell = 9$ in Table 3 is optimal, ### 5. CONCLUSION but $-a = 242 \ 150 \ 619$ is not. In this paper, an algorithm to determine the suitable multiplier for the spectral test is developed by considering inverse correspondence from a pair of integers (n_1, n_2) to multiplier a. Also many multipliers for short word length are shown as tables. They are also applicable to practical uniform random number generation, since a multiplier with good ν_k is expected to give good randomness for the sequence generated by Eq.(1). For exponent ℓ , without these tables, the optimal multipliers can be calculated by this algorithm. ### ACKNOWLEDGEMENT The author would like to acknowledge the continuing guidance and encouragement of Dr. H. Watanabe, Dr. K. Ogata and Dr. T. Mikami. ## REFERENCES - M.D. MacLaren & G. Marsaglia: Uniform Random Number Generators, JACM., Vol. 12, No. 1, pp. 83~89 (1965). - 2. R.R. Coveyou & R.D. MacPherson: Fourier Analysis of Uniform Random Number Generators, JACM., Vol. 14, No. 1, pp. 100~119 (1967). - D.E. Knuth: The Art of Computer Programming, Vol. 2/Seminumerical Algorithms, Addison-Wesley (1969).