100
LR(k) Parser Generator and its Application to

FORTRAN Compilers
Tomihiko Kojima*, Masamichi Kato**, and Tkuo Nakata**

1. Introduction

We developed a parser generating system, LR(k) ANALYZER, which constructs an
optimized SLR(1) or LALR(k) parser in tabular form from a given syntax description
in BNF (Backus-Naur Form) with some additional information cqncerning the semantics
of a language.

Using this system in 1971 we implemented FORTRAN compilers in order to investi-
gate the kind of semantic routines which should be added to the generated parser in
constructing the compiler as well as the practicality of the compiler itself. LR(k)
ANALYZER is used now as a tool for compiler design and development.

We reformed F. L. DeRemer's algorithmz) to construct a parser and make it
suitable to computer processing. We also added some optimization algorithms to it.

LR(k) ANALYZER can generate an efficient parser by considering whether each
syntax rule has semantic actions or not.

We will describe the automatic generation of a parser by this system and give
practical examples applied to the construction of FORTRAN compilers.

LR(k) ANALYZER, which is coded in FORTRAN, is a 4500 statement-size program.

2. LR(k) ANALYZER
2.1 Descriptive form of Input Grammars

The following is the input information for LR(k) ANALYZER.
(1) Syntax rules of a language written in BNF.
(2) Output symbols at reduction states which can be written after each syntax rule.
(3) Action routine names. Action routines are semantic routines that are executed
at the time of syntax analysis. They can be inserted in the right hand side of each
syntax rule.
(4) The symbol designating the syntax rules which has no semantic actions in the

reduction states (such as <FACTOR >

. . <PROGRAM> 1= CDECLARATION><PROG BODY>END((END))
— <PRIMARY>). This symbol is used <DECLARATIONS>::= C<TYPE ST>! | <DECLARATION>CTYPE ST>!
<TYPE ST> REAL <<R_TYPE SET>> <DCL LIST>;! |

to optimize a parser. INTEGER <CI_TYPE SET>> <NPCL LIST>;!

Boaon

<nCL LISTY = IDENTIFIET | <DCL LIST>, IDENTIFIER
Fig. 1 shows a simple example of <PROG BODY> ::= <PROG BODY>CASSIGNMENT>! |
CASSTGNMENT> !

; CASSIGNMENT> ::= IDENTIFIER=CE>;((=))

an input grammar G. The symbols <E> tre CEXHCTICC +) [<E>=CT((=)) | <T>1
) <T> 1= KTORCEX(C *) | <TX/KEX(C /)Y | <F>!
enclosed in (()) are output symbols <F> Tm (PY>eRCF>((2)) | <P>Y
) <> t= (CE>)! | IDENTIFIER! | CONSTANT!

and the symbols enclosed in € > are
action routine names. The symbol ! Fig. 1 Input Grammar G

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 15, No.2 (1974), pp. 93~100.

* Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, Japan
** Systems Development Laboratory, Hitachi, Ltd., Totsuka, Yokohama, Japan

101

after syntax rules indicates that they have no semantic actions in reduction states.
This example is used in the construction of a translator which converts source
programs to reverse Polish lists. In this example, it is assumed that identifiers
and constants in assignment statements are immediately output after they have been
scanned, and they are not designated as output symbols.

An empty symbol can be also used in input grammars.

2.2 Generation of Parsers)

In the LALR(k) parser generator developed by.W. R. Lalonde3), the LR(0) machines
are constructed by representing a configuration set with a bit matrix which is based
on the Knuth-Earley algorithm. In our system, however, we construct LR(0) machines
based on the table where state names are inserted in the syntax rules as shown in
Fig. 2 in order to simplify the processing of the computer.

LR(k) ANALYZER constructs a parser from this table through the following step 1
to step 6.

Step 1 constructs a push-down automaton from the characteristic finite state
automaton as shown in Fig. 2.

In this step the terminal transition table and the non-terminal transition table
are generated. For example, the terminal transition, (STATE 18 * STATE 19), and the
two non—terminal transitions, (<T> <{T> STATE 18) and (STATE 19 <F> #14) are
obtained from the 15th line in Fig. 2. The terminal transition (STATE 18 * STATE 19)
means that STATE 19 becomes the new current state when the input symbol '*' is read
in STATE 18. On the other hand, the non-terminal transition, (STATE 19 <F> #14)
means that #14 becomes the new current state if the state name, STATE 19, is located
on the top of the stack in the look-back state corresponding to the non-terminal
symbol <F>. The non-terminal symbol <T >, on the left side of (<T> <T> STATE
18), is considered to be the sum of all states where <T > can be read. In this
example, as the states where {T)> can be read are STATES 12, 15, 17 and 24, the <T>
on the left side of (<T> <T> STATE 18) is replaced by these four states.

Step 2 makes the push-down automaton deterministic (except in the case of in-
adequate states) by merging, splitting and deleting the states. For example,

STATE 14 in Fig. 2 is split into STATE 13 and STATE 25. As a result, STATE 14
becomes unnecessary and is deleted. STATES 3, 8 and 10 are also deleted in the

same manner.

© <PROGRAM> <DECLARATION> STATE 1 <PROG BODY> STATE 2 END + 1 oT 1
<DECLARATION> <(TYPE ST> ¢ 2

<DECLARATION> <DECLARATION> STATE 3 <TYPE ST> £ 3

<TYPE ST> REAL STATE 4 ACT 1 <DCL LIST> STATE 5 L
<TYPE ST> INTEGER STATE 6 ACT 2 <BCL LIST> STATE 7 #£ 5
<DCL LIST> INENTIFIER 6

<DCL LIST> <PCL LIST> STATE , STATE 9 EDENTIFIER ¢ 7

<PROG 8ODY> <PROG BODY)> STATE 10 CASSIGNMENT> # 8

<PROG BODY> <ASS!IGNMENT)> L]

<ASSI GNMENT> IDENTEFIER SYATE 11 = STATE 12 <E> STATE 13

L3 ouT .2

<E> <E> STATE 14 + STATE 15 <T> #11 ouT 3
<E> <E> STATE 14 - STATE 17 <T> £ 12 ouT &
<E> <T> ?

<T> <M STATE 18 * STATE 19 <E> # 14 ot 5
<T> L9 24 © STATE 18 / STATE 21 <F> 415 OUT &
<T> <F> # 16

<F> <P> STATE 22 ** STATE 23 <F> 17 ouT 7
<F> <P> # 18

<P> { STATE 24 <E> STATE 25 b 419

<P> IDENTIFIER # 20

(424 CONSTANT ¢ 21

Fig. 2 Characteristic Automaton of the Grammar G

102

Step 3 computes read-states which should be stacked (called stacked-states). It
is necessary to decrease the number of stacked-states not only to save stack's
house-keeping time but also to simplify the parser. Stacked-states can be determined
from the non-terminal transition table. We need not "look back" the stack if the
destination state can be definitely determined no matter what states are located on
the top of the stack. This decreases the number of stacked-states. In the case of
grammar G in Fig. 1, the stacked-states are STATES 12, 15, 17, 19, 21, 23 and 24
(they are preceded by @ in Table 1).

Step 4 computes look-ahead sets if inadequate states exist. . LR(k) ANALYZER first
computes SLR(1) look-ahead sets and then LALR(k) (where k < 3) look-ahead sets if
there exist inadequate states which are not SLR(1), in this case LALR(3) grammar can
be accepted.

Step 5 computes the number of stacked-states which must be poped up in each
reduction state.

Step 6 optimizes the parser.

2.3 Optimization of Parsers

LR(k) ANALYZER optimizes parsers as follows.
(1) Avoidance of look-ahead

Four look-ahead states occur from the finite automaton of Fig. 2. Fig. 3 shows
one of them, that is, the transition, (STATE 15 <T> LA 2) is generated to elimi-
nate inadequacy occuring from the two transitions, (STATE 15 <T)> STATE 18) and
(STATE 15 <T > #11), where LA 2 is a look-ahead state.

The look-ahead set for STATE 18 is { * / } and that for #11 is {;, +, =) }.
The part enclosed in asterisks in Fig. 3 shows an optimized form of the look-ahead
transition. As STATE 18 is not a stacked-state and has no action routines, in the
look-ahead state LA 2, the input symbol is read (not "looked ahead") if the input
symbol is '¥' or '/'. As a result either STATE 19 or STATE 21 becomes the new
current state. In the case of other input symbols, it is not read and the reduction
state #11 becomes the new current state.

STATE 18 is deleted because no control is passed. This results in absolutely no
change in the behavior of the parser.

LR(k) ANALYZER represents a parser by using four kinds of transition tables—-—
terminal transition table, look-ahead table, look-back table and reduction table.

In the case of the grammar G in Fig. 1, Table 1~ Table 4 are obtained as these four
tables. The following descriptions follow these tables.
(2) Sharing of terminal transitions

. L ! TH!S IMADEQUATE STATE IS SLR(1)
If the set of terminal transitions start-

])] STATE 15 <T> STATE 18 * STATE 19
ing from one state is a subset of the set of / STATE 21
STATE 15 <T> 11 4 10

those starting from another state, the former t g;ﬁ;&i?
. .) £ 19
transitions are shared. For example, in STATE 18 IS NOT A STACK-STATE, THEREFORE
. tﬂﬁi.('t*ﬁti*'*t"ﬁ."'ttﬁﬁ’ttt**'ﬂ'*tw*

Table 1, the transitions starting from STATE *(STATE 15) <T> LA 2« STA;519*
* / STATE 21+

" OTHERS # 11w

12 are also used as the transitions starting

R R T T R T T Py

from STATES 15, 17, 19, 21, 23 and 24.
(3) Optimization of the look-back table Fig. 3 Optimization of

a Look Ahead Transition

N

103

The look-back table is obtained from the non-terminal transition table. The
states located on the top of the stack in each look-back state are grouped per
destination state. The group having the most members is considered as one state
called "OTHERS". This also results in absolutely no change in the behaviour of the
parser.

. The transition tables are made remarkably compact by the above optimizations (2)
and (3).
(4) Deletion of unnecessary reduction states

As the syntax rules with no semantic actions are designated in input grammar,
LR(k) ANALYZER can find and delete unnecessary reduction states. Thirteen reduction
states are deleted in Table 4.

3. Further Optimization
Besides automatic optimization of parsers by LR(k) ANALYZER, optimizations by

hand or by using simulator are also carried out. This includes the following

optimization.
(1) Partial sharing of terminal
Table 1 Terminal Transition Table transitions
current state Input symbol next state (2) Pruning of arithmetic expressions
STATE 0 REAL STATE & / (3) Making the table smaller by using the
INTEGER STATE 6 / . .
STATE 1 REAL STATE & characteristics of a language
INTEGER STATE 8 . . o
IDENTIFIER STATE 11 (4) Rearranging the terminal transitions
STATE 2 END #1 X . .
INENTIFIER STATE 11 by tracing the dynamic action of parsers
STATE & <R_TYPE SET>
INEMTIFIER STATE S using LR(k) SIMULATOR.
STATE 5 H S¥A$E 3,
STA P i f arith i i i
STATE & " CILTYPE SET> runing of arithmetic expression is
1 L} o
STATE 9 1:235 ﬁg. g;:;s z described using the above transition
STATE 11 = STATE 12
@ STATE 12 IDENTIFIER LA b tables.
STATE 24
CONSTATNT LA &
STATE 13 : # 10
4 STATE 15 Table 3 Look Back Table
- STATE 17
8 STATE 15 'SAME AS' STATE 12
@ STATE 17 'SAME AS! STATE 12
A STATE 19 'SAME AS' STATE 12 current state top of stack next state
Q STATE 21 'SAME AS! STATE 12
@ STATE 23 TSAME AS' STATE 12 LB 1 (<E>) STATE 12 STATE 13
9 STATE 24 'SAME AS’ STATE 12 OTHERS STATE 25
STATE 2% . STATE 15 LB 2 (KT STATE 15 1A 2
- STATE 17 STATE 17 | LA 3
) £ 19 OTHERS A 1
LB 3 (<F>) STATE 19 4 14
STATE 21 # 15
STATE 23 417
OTHERS LB 2
Table 2 Look Ahead Table
current input next Table 4 Reduction Table
state symbol state
LAl * STATE 19
/ STATE 21 current the number output next
OTHERS 18 1 state of pop-up symbol state
LA 2 * STATE 19
y STATE 21 # 1 POP 2 END EXIT
OTHERS # 11 # 10 PoOp 1 = STATE 2
LA 3 * STATE 19 # 11 e 1 + s 1
/ STATE 21 # 12 PP 1 - 18 1
OTHERS # 12 # 14 POP 1 * L 2
LA & ** STATE 23 # 15 PopP 1 / LB 2
OTHERS L8 3 # 17 POP 1 ax L8 3
419 PoP 1 LA &4

104

In the states where the non-terminal Table 5 Optimized Look Ahead Table
symbol <E> is read, i.e., STATE 12

and STATE 24, control can be directly
current .input next
transfered to the <E >'s look-back state, state symbol state
i.e., LB 1, when the identifier or the LAl ; SIQ;E;E
constant has been read if the next input 1A 2 EIHERS STA;gzg
s
symbol belongs to the set {+, -,), ;} . OTHER 8 3

As simple assignment statements such as

A = B appears more frequently, the short

cut mentioned above should be prepared in the transition system so that they are
parsed rapidly.

We often reverse the operation order of look-back and look-ahead. In Table 3,
for example, look-ahead is done in states LA 1, LA 2 or LA 3 after look-back has
been done in state LB 2. 1In this case it is more efficient, however, to look-ahead
the input symbol first. Then Table 2 is reduced to 5 lines as shown in Table 5
("next states" in another tables should be suitably modified).

Now we are going to describe the LR(k) SIMULATOR which consists of a simple syl-
lable reader and an interpreter of parsing tables. It is a program to trace dynamic
actions of parsers and translate source programs to intermediate languages.

This program verifies whether parsers optimized by hand operate correctly.
Statistical data relating to state transitions and execution frequency of operations
are also-output. Using this information we can optimize parsers by rearranging the
transitions. The LR(k) SIMULATOR is also used to estimate the efficiency of com-

pilers, and thus one can find the key points to further improve them.

4. FORTRAN

We applied LR(k) ANALYZER to FORTRAN, ALGOL and SNOBOL 4 grammars. As a result
we were able to find out that all these grammars are close to SLR(1) grammar. To set
up one of these examples, FORTRAN will be described.

4.1 Analysis of FORTRAN Grammars

In case identifiers are written in different names according to their attributes
in FORTRAN grammar (for example, < ARRAY NAME >), this grammér is close to SLR(1)
grammar. In this case, the syllable reader need not necessarily generate different
token-kinds per attribute of identifiers. The attribute can be checked at the time
of synta< analysis by providing a parser with the operator "CHECK". In FORTRAN
grammar, only one inadequate state is not an SLR(1) state (except for a few states
where we must use semantic information). This is the state where a control variable
in <DO-implied list> and a variable as < Input/Output list element > should be
distinguished. However, this state is also an LALR(1) state.

Next we input the grammar where almost all identifiers were written under the
same name independently of their attributes. This time, the grammar became
ambiguous. It can often be solved by look-aheads of only one input symbol if detec~
tion of semantic errors is postponed to the next phase. But it is sometimes more

practical to use semantic information. As a result, we found that FORTRAN grammar

105
is close to SLR(1) grammar and LR(k)

parsing techniques can easily be (1) One entry of state table

aprlied to this language. U0 ivans ot whe aceion routind

4.2 Data Structure of Parsing Tables lonerann Number I Entry 1
We constructed a parsing table based

on the output of LR(k) ANALYZER. The (2) Ore entry of transition table

data structure of the table which con- I Symbo 1 , Mext State 4]

sists of a state table and a transition
table is nearly the same as that of Fig. 4 Data Structure of
DeRemer's parsing table. Fig. 4 shows the Parsing Table

the contents of one entry of each table.

The operation part of a state table contains an operator such as READ, STACK and
READ, LOOK-AHEAD, LOOK-BACK, POP-UP, OUTPUT, CHECK, CALL, etc. which operates in the
state. The number part contains the number of transitions starting from the state
or the number of the stacked-state which must be poped-up in the state. The entry
part usually contains the pointer which points to the entry of the transition table,
but if the operator is "OUTPUT" or "POP-UP" then the output symbol or the destina-
tion state is located there.

In the states where action routines are used, the operator ACT and the address of
the action routine are added. The relative address from the top of the state table
is used as the state number.

The symbol part in the transition table contains the symbol to be pattern-matched
(token-kind or state number).

The size of the parsing tables of FORTRAN grammars were respectively 858, 1364,
1416 bytes with respect to the specification level 3000, 5000, 7000 of JIS (Japanese
Industrial Standard).

5. Application to FORTRAN Compilers

We constructed FORTRAN parsers using LR(k) ANALYZER and implemented FORTRAN
compilers based on the parsers. We will describe in this section the application
method of LR(k) ANALYZER to the l-pass resident FORTRAN compiler for mini-computer
HITAC 10 with 4 KW main memory (1 KW = 1024 Words, 1 Word = 16 bits).

The language specification is close to JIS level 3000, but we set the rules that
key words are reserved words and a blank is a delimiter in order to simplify the
syllable reader. The object program is in the form of reverse Polish notation.

The following is the process used to construct a parser using LR(k) ANALYZER.

First we describe FORTRAN grammar in BNF. Token-kinds, which are output by the
syllable reader, are treated as terminal symbols of the grammar. For example, the
relational operator '.EQ.', '.GT.', '.LT.', ... may be defined as one terminal
symbol. The syllable reader needs only to return the token-kind of relational
operator and the index indicating the kind of operator such as '.EQ.', '.GT.'. We
may also define such FORTRAN grammar as < expression > is a terminal symbol, and
after constructing the parsing table for this grammar we can add the parsing table

for the < expression)> grammar.

106

We extend the FORTRAN grammar so that an arithmetic expression can be described
as a subscript expression in order to simplify the compiler. This FORTRAN grammar
(including <expression)> grammar) can be represented by 90 syntax rules.

Then we design the object code of each statement, and decide what symbols should
be output in each state and insert the necessary action routine names into the
syntax rules taking the semantics into consideration.

The grammar obtained in this way is input into LR(k) ANALYZER. Compiler designers
draw the transition diagram based on the output of LR(k) ANALYZER and optimize it.
First we analyzed the grammar without the optimization phase of LR(k) ANALYZER.

The parsing table size was 631 words. However, it was reduced to 353 words by using
the optimization phase and finally reduced to 280 words by hand.

The action routines written in assembler language became small routines (2 steps~
50 steps). There were approximate 20 action routines. For example, these routines
perform the following processing.

(1) To check the DO terminal statements
(2) To write identifiers' attributes into the symbol table
(3) To count the number of parameters.

We implemented a l-pass resident FORTRAN compiler for 4 KW mini-computer use, by
adding an input/output routine, library function routines and execution-time
routines. The size of the compiler is 1.4 KW. The execution-time routines are 800 W
and the user area is 600 W. The size of the action routines in the compiler is 279 W
and that of the interpreter of the parsing table is 116 W. The average compiling

speed per statement was 19 ms.

6. Conclusion

Aiming at a CAD system for compilers, we were able to develop LR(k) ANALYZER which
constructs a parser in tabular form and implemented practical FORTRAN compilers in
a short period using this system. Our goal is to generate the whole parser by giving
the necessary information in input grammar.

This time, however, we were able to reach the step where we could designate the
form of the object language and action routine names.

We want to introduce a formal description concerning error correction and error
recovery. We intend to improve this system so that it can be used for the estima-

tion as well as the design and the construction of compilers.

References
1) D. E. Knuth: On the Translation of Languages from Left to Right, Information and
Control, Vol. 8, No. 5, pp. 607 ~ 639, Dec. 1965
2) F. L. DeRemer: Practical Translation for LR(k) Languages, Ph. D. Thesis. MIT,
Cambridge, Mass. Oct. 1969
3) W. R. Lalonde: An Efficient LALR Parser Generator,.Technical Report CSRG-2,
Toronto, Feb. 1971

