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A Probabilistic Consideration of Sparse Matrix

Tsutomu Shiino*

1. INTRODUCTION

In sparse matrix calculations, the reduction of computational steps whereonly
a minimum level of storage capacity is required is most impotant. Even when an in-
itial matrix contains many zero elements, failure to select proper pivoting order will
increase non-zero elements during the computational process and thus one can not take
advantage of sparsity. For this reason, various techniques for optimal ordering have
been widely reported. However the effects of sparse matrix method have rarely been
discussed quantiatively and usually they have been discussed only with special
problems in these papers.

This paper presents a probabilistic consideration of ordinary sparse matrices,
and studies quantitatively the change of the number of non-zero elements during the
process of calculations and the effects of non-zero element distribution on calc-
lation process. It also discusses the technique of predicting the maximum number of
non-zero elements. It shows that sufficiently effective results can be obtained by
initial ordering of sparse matrix alone without subsequent pivot selections. It also
shows that remarkable improvement can be made by initial column interchange in ad-
dition to initial row interchange, and discusses the optimum distribution of non-zero

elements of the initial matrix.

2. PROBABILISTIC TREATMENT OF SPARSE MATRIX
Let us assume to calculate a simultaneous equation having n x n coefficient

sparse matrix X by the Gaussian elimination method. The initial matrix is represented

0) and the element of ith row and jth column is represented by x..(o). If the

ij
(0) (0)

, the number of non-zero

by X(

probability that xij is non-zero is expressed as Pij

)

elements (the expected value) in X
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Consider the increase of non-zero elements at an elimination step with the first row

(0)
11

elements in the ith row increases only when X5 is non-zero and j satisfies the con-

as a pivot row. It is assumed here that x is not zero. The number of non-zero
ditions of le % 0 and Xij = 0 exists. Therefore, the increase of non-zero elements
in the ith row can be expressed by the following equation.
(o[ n (9 . (0

Pi1 g Py T APy (2)

The number of increased non-zero elements by the first elimination is
n n
¢CW o o OFF p (O _p Oy )

j=2 il j=2 13 ij

The sub-matrix obtained by eliminating the first row and the first column of the post-

) represented by X*(l). The probability that the element xij(l)
(i, 3 =2, oo, n) of x+(1)

(1) _ (0) (0) (0) )
pij = Pij 1 X P1j x (1 - Pij

Generally, the number of non-zero elements which is increased by the kth

elimination matrix X
is non-zero can be given by

). , 4

+ P.
1

elimination is given by
n - n o (k-
c® - 3 p KDL p e D@ e 0Dy (5)
izk+1 jekel J
The probability that the element Xij(k) (i, j=k+1, k+ 2, ..., n) of thesubmatrix

X*(k) is non-zero is obtained by the following equation.

(k)

The number of non-zero elements in the row X can be expressed as

ORI SIS o

where k = 1, 2, ..., n.

3. MATRIX HAVING RANDOM DISTRIBUTION OF NON-ZERO ELEMENTS AT FIXED PROBABILITY
Let us assume that the randomly distributed non-zero elements in a matrix has
fixed probability. Since diagonal elements must be non-zero, it is assumed that
0 .
pii( ). 1(G=1,2, ..., n).

The number of non-zero elements that are increased by the kth elimination is
¢® ooy pED {(n-k-l)p(k‘” x (1-p1)y 1} (8)

Note that P(k'l) denotes the non-zero probability of the non-diagonal elements of the
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sub-matrix X*(k) obtained by the (k-1)th elimination. The non-zero probability P(k)
of the elements other than the diagonal elements in X*(k) is given by

pldd _ pk-1) +{P(k'l)}-2 X { 1 - plk-D }, 9
and the total number of non-zero elements is

N D, k) (10)

Fig. 1 and Fig. 2 show the values of,N(k) and P(k)

obtained by equations (8), (9) and
(10) for n = 101 and n = 1001. In these figures, m is the number of non-zero elements
in each row, excluding the diagonal element. The figures show that the number of non-
zero elements reaches a peak near P(k) = 1, and the peak value Nmax(k) can be ob-
served:

Nmax(k) o (n - k)2 (11)
All the subsequent sub-matrices X*(k) will only have non-zero elements. If P(O) is

given, the value of k corresponding to P(k) = 1 can be obtained from equation (9).

The results are shown in Fig. 3.

4. MATRIX HAVING UNIFORM ROWWISE AND NON-UNIFORM COLUMNWISE DISTRIBUTION OF
NON-ZERO ELEMENTS
In such a case, the number of non-zero elements which is increased at elimi-
nation steps can be decreased sharply by selecting pivotal rows. The number of non-

zero elements in an entire matrix after the kth step of Gaussian elimination is

(k) _  (k-1) o (k-1) (k-1) (k-1)
N =N + i=§+1 Pi X -{(n—k—l)Pk a1 - Pi ) - 1}. (12)

The probability that the elements, with the exception of the diagonal element,

in the ith row of the sub-matrix X*(k) is given by
p. (K p. (k-1 p (k-1) X p (k=) gy . p, (k-1) (13)
i i k i i
where i =k + 1, k + 2, ..., n, and Pi(k—l) is the non-zero probability of the ele-

(k=13 Fig. 4 shows NI of the matrices

ments in the ith row of the sub-matrix X*
which have n = 1001 and N(O) = 5005 and three types of columnwise distribution.

Line (a) in Fig. 4 represents a matrix in which non-zero elements are distributed at
a fixed probability P(O) = 4/1000 in the entire matrix (except the diagonal elements.)
Line (b) represents a matrix with the following distribution.

Pil(o) 1 - 143 P. 0 . 5/1000 : i

= 1/1000 : i, = g T g = 573 - 715
©) D i= - 0 _ S i=
P, 0 =2/1000 : i, = 144 - 286 P, ~70 = 6/1000 : i = 716 - 858
0 _ D i = 0 _ Di =
Py = 3/1000 : i, =287 - 429 P, 7" = 7/1000 : i, = 859 - 1001
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0y _ = -
Pi4 = 4/1000 : i, = 430 - 572
Line (c) represents the completely reverse distribution (i1 - i7 of (b)).
In the case of ordinary matrices whose non-zero element distribution is not

uniform, remarkable improvements can be made by interchanging rows in the order of

increasing number of non-zero elements (from small to large as in (b)).

5. MATRIX HAVING UNIFORM COLUMNWISE AND NON-UNIFORM ROWWISE DISTRIBUTIONS OF NON-
ZERO ELEMENTS
The number of non-zero elements in the entire matrix after the kth step of

elimination is given by

n
N o (k=D +(n«-npkw‘nx 5o, Do p D)y oy (14)
j=k+1 J J
where Pj(k) is the non-zero probability of the jth column of X*(k). This equation

can be transformed as below.

N oD gy x B
j=k

+1

{ pk(k_l) Pj(k-l)(1 'pj (kal)) - l} (15)

It becomes clear that it is completely identical with the equation (12). The non-zero

probability, P.(k)
p. (K o p (k-1) p (k-1) P.(k“l) 1 - p, (kD) (16)
3 J k J J
It is seen that this is identical to eq. (13). In other words, the distri-

, of the elements of the column j is

butions of rowwise non-zero elements and of columnwise non-zero elements have an

identical effect in the overall calculation of sparse matrix.

6. OPTIMAL NON-ZERO ELEMENT DISTRIBUTION OF INITIAL MATRIX AND ESTIMATION OF

MAXIMUM STORAGE CAPACITY

The distribution of non-zero elements in the initial matrices has a large ef-
fect on the memory capacity and the number of calculation steps of a sparse matrix.
Considering a general purpose program which does not make use of the correlation be-
tween the elements, a sufficient condition for an optimal matrix calculation is that
the non-zero elements of the initial matrix are ordered in an increasing order of non-
zero probability for rows and columns. No pivot selection is needed for sufficiently
large matrices if there i; no correlation between elements. The worst possible dis-
tribution of non-zero elements in a matrix is a uniform distribution. In this case,
however, the maximum possible number of the increase non-zero elements can be obtained

by equation (11) as mentioned in chapter 2.



55

With the above considerations the maximum number of non-zero elements of a
matrix can be estimated by ordering the rows and the columns of the initial matrix
and comparing the density of non-zero elements in each column and row with P(O) of

Fig. 1 or Fig. 2.

7. EFFECTIVENESS OF SPARSE MATRIX METHOD

The choise between the sparse matrix method or conventional matrix reduction
method alwdys poses a problem in calculating some matrix. It seems quite useful to
clarify the scope and range in effectiveness of the sparse matrix method from the
point of view of both storage capacity and computational time.

If the locations of non-zero elements of a sparse matrix are stored by the
row number and the column number, the storage capacity for non-zero elements locations
is given by the number of rows and the number of non-zero elements. The total storage
capacity for the sparse matrix is n + 2N, where N is the number of non-zero elements.
From the point of view of the storage capacity, the sparse matrix method is useful if

n® >n + ZNmax
where Nmax is the maximum number of non-zero elements.

Let us now consider the processing time required. Let a be the ratio.of re-
location processing time and elimination processing time. The ratio of the process-
ing time of sparse matrix method vs. that of non-sparse matrix method can be given
by A (1 + a)/AO. It is assumed here that the processing time is proportional to the
total number of non-zero elements. Here A is the area enclosed by the curve of
sparse matrix method of figure 2 and the horizontal axis. A¢ is the area enclosed by
the curve of non-sparse matrix method (100% non-zero probability) of figure 2 and the
horizontal axis. If a = 1, the sparse matrix method is useful in the range of

2A/A0 < 1.

8. CONCLUSION

The sparse matrix method has been used extensively for computation of matrices
containing many non-zero elements. This paper has quantitatively studied possible
changes of numbers of non-zero elements during calculations through probabilistic
consideration. It is clearly established that an ordering of initial matrix by row
and column interchanges is quite effective for the general-purpose calculation program
for large-scale sparse matrices. Methods of prediction of the maximum fill-in of

non-zero elements, the total number of non-zero elements generated, and the volume
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of processing and effectiveness of the sparse matrix method are also discussed.
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Fig. 1 Number of non-zero elements
vs. elimination step. (n = 101)
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Fig. 2 Number of non-zero elements
vs. elimination step. (n = 1001)
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Fig. 4 Effect of the distribution of
non-zero elements in the initial
matrix on elimination process.



