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Computation of Bessel Functions K, (z) with Complex
Argument by 7-method

Toshio Yoshida* and Ichizo Ninomiya*

1. Introduction

The modified Bessel functions Ka(2) are written as

Kn(2) =(—2%)% eF A (1)

z
where Ja(t) satisfies the following differential equation
e+ 2t+1) faw - (n-1) faer = 0 (2)
In this paper, the ’C-methodi’nproposed by C.Lanczos is applied to
the computation of Jalt). This method is useful for Re(t)>0 and has the
advantage that the value of 5t) is efficiently obtained outside the
region of small |¢l.

Now let us employ a finite expansion as an approximation Jum(t) tO.

SAGKE

Jam(£) = bo+ Bt + byt o+ B t™ (3)
For this purpose, we consider the following differential equation with

the free parameter B

CARWO + 206+ D Alw-(7- %) fuwr= 2Ca (§) 4
where C:w(t/ﬁ) in the additional term is the shifted Ultraspherical poly-
nomial of degree m, which includes the shifted Chebyshev polynomial (&=
0 ) generally used in the Z-method and the shifted Legendre polynomial

(x=0.5), and is defined by
xe _ 3 ¥ g ["(o(-f—%) “ b_ m-k 1 [(2ct+m+k) , %
- (0= kZ—o Cus = T2 gz( A Y YA ACIe ) oo

Substituting Eq.(3) into Eqg.(4), we have

*e)

£ (c); z ¥, “Coe SV

%0 2(R+1) Qaa B* (&)
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where
a,=1 _ Ur-n{4n’-9) - e (4~ (28-17)
e %/ 57
Set)= Qo+ Qb+ Qutie- ot Qut*

(kz1) ,

We now satisfy the initial condition Jam(0)=1 and then obtain

*() X

Selt) /| & -
+1) Ay % 300 (B+1) Qs B

)= S )
Janl®) = 5@

The approximation Ja=(t) has the free parameters « and B.

2. Error Analysis

We investigate how to determine the parameters « and B8 so that one
can obtain a good approximation Jam ().

Let Dan(t) be the absolute error of the approximation Jum(t):

L) = for®)+ Tom (£ (8)
For Jfu(t), the following equation holds
Efon (8 + 2(6 4 1) frn (1) (n= L) fum(8)= Ewn(t) (9)
where
#o
Emt)= C2O(&) ) 5 Z(M)awﬁk (10)

Accordingly, we obtain from Eqs.(2) and (8) the following equation,
2 ” ’ 2 1 -
£ qmn () + 2(£+1) ' (8) = (7= 1) P (8) = = B () (11)
The general solution of Eq.(11) is expressed by

where

fun= (&) etu )

b

(13)
gﬂ(w-( ) et L),
/ ’ 2 2
= Jal0 Ga(0 = L0 9n (0 == 75, €7
Determining A and B from the following initial conditions
?'nm(o): 0 s
X(K) *(a) (14)

*(4) m y
?‘nm (0) = a,1 a Z y C‘”Lk = =%‘Cm:” Z

2(k+1)am,3 £ 2(B+1) Qs B* 2<&+1)am g*

we have
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L
2

?gm(t>=(—’§~)%—h17{( ) e josm(x)< ) C*(“)(—«)dx}

1 3
1 *eo 1 1\2 —1— 2
+?Cmo —-—--(-z«) Lm Swm(x)( ) N (15)
where
m x(«)
_— 16
é 2(&*’0@»13‘ (16)
and

S = (Ka(3) L(3)- LD KE)/ e* an

2.1 The Case of Re(®)>0

The second term of the right-hand side in Eq.(15) vanishes for
Re(£)>0 and the relative error €..(t) is given by
€an () = 0, () ) fo(1) = Pr Gan(®) (18)
where
1
tm = (F) 74— (19)

and

1
Ly
& ) an .

G (6) =fot(1,,(§ 1{(( ;1((1» ’

We now investigate the behavior of the relative error for various

values of « and 8.

Example 1 We consider the case ¢=0.5 as an example of real posi-
tive t. For m=8 and 7=0,1, the relative errors €., and the values of
the integration g.. are shown in Table 1. It is found from this table
that for each o the relative error attains a minimum when B 1is equal
to ¥, and for o0=0.5 the minimum is smalier than the others. It is
also seen that the minima of Qos and @z occur at the same time as €y, and
€5 - This suggests that the function pnn changes very slowly comparing
with Qun. It is sufficient to consider only Q.. for studying the behav-
ior of the error €mm.

For a polynomial F(x) of degree m-1, we have
t i
VLS _
fo Fp ) de =0 (21)
from the orthogonality of the shifted Legendre polynomial. The above

. ()
result for g.. suggests that the integrand, with the exception of C,(4),
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of Eq.(20) is well approximated by a polynomial of degree m-1.

Table 1 Relative errors €,s and €,3 (v =0.5)

n =20 n =1

a | B Qs €og 4.8 €18
0.8 -6.85E-04 4.18E-09 -6.69E-04 | -4.91E-09
0 0.9 -7.53E-04 2.63E-09 -7.02E-04 | -2.93E-09
1.0 -3.55E-04 7.39E-10 -3.65E-04 | -9,05E-10
1.1 9.99E-03 | -1.29E-08 8.07E-03 1.24E-08
0.8 -5.62E-04 3,27E-09 -5.03E-04 | -3.52E-09
0.4 0.9 -2.77E-04 9.24E-10 -2.61E-04 | -1.04E-09
' 1.0 -1.49E-04 2,97E-10 -1.52E-04 | -3.61E-10
1.1 1.35E-02 | -1.67E-08 1.09E-04 1.61E-08
0.8 -5.92E-04 2.32E-09 -4.97E-04 | -2.34E-09
0.49 0.9 -1.16E-04 2.61E-10 -1.03E-04 | -2.76E-10
: 1.0 -2.55E-05 3.42E-11 -2.61E-05 | -4.18E-11
1.1 2,12E-03 | -1.77E-08 1.73E-02 1.71E-08
0.8 -5.84E-04 2.19E-09 -4,84E-04 | -2.19E-09
0.5 0.9 -8.41E-05 1.81E-10 -7.10E-05 | -1.83E-10
: 1.0 -8.82E-07 1.14E-12 -1.11E-06 | -1.71E-12
1.1 2.22E-02 | -1.78E-08 1.81E-02 1.72E-08
0.8 -5.73E-04 2.07E-09 -4.69E-04 | -2,03E-09
0.51 0.9 -4,83E-05 9.98E-11 -3.57E-05 | -8.84E-11
: 1.0 2.65E-05 | -3.28E-11 2.66E-05 3.93E-11
1.1 2.33E-02 | -1.79E-08 1.90E-02 1.73E-08
0.8 | -3.10E-04 | 7.90E-10 | -1.56E-04 | -4.78E-10
0.6 0.9 4,72E-04 | -6.89E-10 4.76E-04 8.32E-10
: 1.0 4.27E-04 | -3.73E-10 4.32E-04 4,51E-10
1.1 3.49E-02 | -1.90E-08 2.85E-02 1.84E-08

Example 2 Here we consider the case ofl¢tl=0.5 and argt =1dtld)86 as
an example of complex €. For m=8 and n=0, the absolute value of the
relative error, |€,.l, is shown in Table 2. We confine ourselves to the

case where B8 is set equal to v, since this choice may lead to higher
accuracy by the analogy of example 1. The value of of, for which I[€qsl
takes a minimum value, depends on arg ¢ :when arg? approaches z/2 from 0,
it becomes graduately larger than 0.5 and then the relative error
increases, which means that thé integrand, with the exception of C:.?x/ﬁ),
of Eq.(20) departs from a function which is well approximated by a poly-
nomial of degree m-1. Moreover, in the vicinity of arg ¢ =7%/2, |€, does

not vary much with .
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Table 2 Relative error €, (|tl=0.5)

€0l
arg t
o 10° 20° 30° 40° 50° 60° 70° 80°

0 7.62E-10| 8.37E-10| 1.00E-09 | 1.39E-09 | 2.35E-09 | 4.90E-09 | 1.17E-08 | 3.01E-08
0.4 3.06E-10 | 3.40E-10 | 4.24E-10| 6.46E-10 | 1,26E-09 | 2.94E-09 | 7.56E-09 | 2.07E-08
0.49 4.20E-11| 7.41E-11| 1.62E-10} 3.89E-10 | 9.74E-10 | 2.52E-09 | 6.78E-09 | 1.90E-08
0.5 *2.02E-11 [*5.82E-11 | 1.48E-10| 3.73E-10 | 9.51E-10 | 2.48E-09 | 6.70E-09 | 1.88E-08
0.51 3.74E-11 | 6.28E-11 *1.44E-10 |*3,62E-10 { 9.31E-10 | 2,45E-09 | 6.62E-09 | 1.86E-08
0.55 1.79E-10| 1.91E-10 | 2.33E-10| 3.89E-10 [*8.92E-10 | 2.32E-09 | 6.32E-09 | 1.79E-08
0.6 3.80E-10| 4.02E-10 | 4.47E-10| 5.63E-10 | 9.59E-10 [*2.24E-09 | 6.00E-09 | 1.71E-08
0.7 8.44E-10 | 8.94E-10 | 9.84E-10| 1.14E-09 | 1,46E-09 | 2.43E-09 (*5.64E-09 | 1.57E-08
0.8 1.39E-09 [ 1.47E-09 | 1.62E-09 | 1.86E-09 | 2.26E-09 | 3,12E-09{ 5.79E-09 | 1,47E-08
0.9 2.01E-09 | 2.14E-09 | 2.36E-09 | 2.71E-09 | 3.25E-09 | 4.19E-09 | 6.54E-09 [*1.44E-08
1.0 2.72E-09 | 2.89E-09 | 3.19E-09 | 3.67E-09 | 4.39E-09 | 5.54E-09 | 7.86E-09 | 1.48E-08

From the above discussion, we conclude that the choice of «=0.5 and

8=t leads to the accurate and efficient computation of J[fn(¢£). Thus for

the approximation (), we have

k=0 (ki’])dkﬂ tb Z=0 (k‘f‘l) Aprq tb .
where P is the coefficient of the k&-th power in the shifted Legendre

polynomial.

As an example of the relative error of Eq.(22), the case of m=7 for

Fig.l Relative error |[€yq!
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n=0 is shown in Fig.l. In the region of small [¢] near the imaginary
axis, a larger value of m is necessary to obtain higher accuracy.

2.2 The Case of Re(£) <0

The second term of the right-hand side in Eq.(15) diverges for
Re(#) £ 0 and therefore €. may not be expressed by such a simple form as
Eq. (18). The value of €. is larger relative to the case of Re(£) >0 and

it does not become smaller with increasing value of m.

3. Conclusion
This method is valid for Re(¢) >0 and leads to the efficient com-
putation of f,(¢) outside the region of small I¢l. This method has
great advantage that, for the same amount of arithmetic operation, the
value of Ka(z) is obtained more accurately by 2~4 significant figures

than the method using the continued fraction algorithm?
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