130

On the Generating Method of an Efficient Top-
down Syntax Analysis Program

Kazuma Yoshimura™

Abstract
In this paper, an algorithm which automatically generates a Syntactic Analysis
Program for an extended LL (k) grammar is presented. In addition, an optimization

algorithm for the generated program is proposed.

1. INTRODUCTION

Over the past decade many attempts have been made to develop syntactic analysis
programs of LL (k)l) grammars automatically for compilers. This is because syntactic
analysis programs for LL (k) grammars can be built top-down, and are easy to verify,
and modify.2

Backes' method?) though easy to understand, retains some redundancy such as
comparing nonterminal symbols in the pattern matching process.

In this report, an algorithm which automatically generates a Syntactic Analysis
Program for extended LL (k) grammars is presented. In addition, an optimization
algorithm is proposed for the generated programs. This optimization will produce
syntactic analysis programs which aside from the look ahead symbols need only the
currently scanning input symbol for a pattern matching process which calls for the

next input symbol at its success.

2. REPRESENTATION OF A SYNTAX ANALYSIS ALGORITHM
Introduced in this chapter, is a language describing syntax analysis programs.
By using this language a method of making syntax analysis programs for extended

LL (k) grammars is presented.

2.1 A Language for Syntax Analysis Description
The extended Floyd Production language is defined in this section as:
<label> | < pattern> [<look ahead string)>] (< S-part >)(< F-partd)

Here, <label> is the name of this statement. Pattern matching and look ahead strings
are entered in the< pattern) and < look ahead string > columns. If a connected string
in the(pattern >and <look ahead string >columns in this order coincides with a cor-
responding part of an input string, the process defined by the { S-part)> will be
performed, if not, the process defined by the < F-part)> will be done.

The 'S-part' and 'F-part' are the abbriviations of success action part and
failure action part. If the < pattern >columns is ¢, the S-part is performed. The
<S-part > and <F-part >are of the same form. Labels, numbers, #, *, ERROR and RETURN

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 16, No.3 (1975), pp. 195~204.

* Central Research Laboratory, Hitachi; Ltd.

ey

performed in left-to-right

131

AL o o A T ™o L . o . Y
vere separavea by commas. ipen, acvTions corresponaing o tnem are

order. Label means to call a statement labelled by this

and # means to call the next statement. RETURN indicates the completion of the call

corresponding to this RETURN. Label and # written in the last part of the S column

or F column mean a jump to
symbol * means to read one

error management routine.

that label and the next statement respectively. The
symbol from input string, and ERROR means to call the

Number represents a call of the corresponding semantic

routine. The symbol * or a number may not be written at the end of the action part.

2.2 A Transformation
Floyd Production

2.2.1. Definitions

Let G = (V, I, P,

algorithm from Backus Naur Form to the Extended
Language

S) be a context free grammar

Here: V = a finite set of symbols.

L = a subset of V, of which elements are called terminal symbols.

Elements of V-L are called nonterminal symbols.

P = a set of production rules of the grammar. An element of P is

written in

*
the form &—w; here £€V-IL, weV .

S = the start symbol of G.

*
A head terminal string with length k derived from w€V is as:

Definition 1. h"(w) = {«/|

| al =k, ae(zu F)¥,

SF...F = pwy =>pad }

Here, | o| means the number of symbols in the string a .

Definition 2. G is called a ALL(k) grammar, if the following conditions are satis-
fied. ALL(k) is an extension of LL(k).
(1) There is no B such that

A ;5 Bv :; Av' v,v'
? ’

eV, BAA, BEV-I for AEV-I .

(2) We classify the element of P according to the left side symbol of - . A class

is represented as:

A-u A = Ay
: (2.1) : (2.2)
: o,
A= up, A hup,
Here head symbols of Uys -ees umA are not A.
Let DN(A) = 9. (hk(ui)(\hk(uj)) i, 5 =1, 2, eee, my (2.3)
ifj
B = g (8 DN () 5, 5=1,2 i my (2.4)
N (4) = {al s _—3 YAS, xeh®(8) here, A of YAGS could not be

generated using (2.2)}.

Then, for all A € V-I ,

ny
Dk(A) =0, Ek(A) =¢, 'Ul hk(u;)r\Nk(A) = ¢ . Here ¢ means the empty set.
i=

132

D"(A) = ¢ is & condition sufficient to decide which production rule of (2.1)

should be applied since a head string of the remaining input string should be reduced

to A. Ek(A) = ¢ is a condition sufficient
should be applied after reduction to A has
ion hk(n!)l\“k‘A\ = Pis a

The exnress A
The express u;In N (4 D a

reduction to A must be continued or not.
Definition 3. Z*

if wiézv* end ;€2 (i =1, 2

+«.y n) satisfy the following condition, Si

to decide which production rule of (2.2)

done.

is

called a characteristic string set for separating Wi.
For all wie Wi, there exists wGSi such that weh"” (wi) and w*hlwl (wJ.) for all

L
wjewj, j #i; There exists vje\fj such that w'e h'w' (wj), w' is an arbitrary head

string of w with the length more than 1, if |wi 2 2, i#3j.

2.2.2 An algorithm of transformation

Here, an algorithm which generates Floyd Production statement from ALL(k)

grammar is presented.

First the characteristic sets Si of Vi

1
1) Let S:i _{al a€h (vj), vje HJ.}, put

€ ZV* are calculated as follows:

k =1.

2) 1If there is a string o which is in two or more elements of class { Sj} and || §k,

let Sj1, --vry S

jm

1, ..., m), insert string B into Sjl. such that it € Wj 1» B€h

as one of its head string.

be all sets which have O as an element.

Delete @ from Sjl (1=

k+1
(wj“’ and g has @

Do 2) as far as possible.

3) If for some i, j,Si/\Sj # @, put k =k + 1 and do 2).

If there is a characteristic string, the above procedure must be ended in finite

steps. The characteristic string set Ck(A,

..y m,, is computed in order

llj),j=1, A

to decide which production rule must be applied in (2.1); and the characteristic
string set Lk(A, u:'j) and Mk(A) in order to separate sets uj, ..., u'ny, Nk(A), j=1,

.y DA.

my
Let: C*(A) = U, cX(A, uy)

DA

t*a) = v ¥, u)).
i=1

(1) The procedure PI(A) producing the program for selection of an applicable produc-—

tion rule from (2.1), when it is known that some head string of the remaining input

string should be reduced to A, is given here.

Let a,, ..., af be all of the different head symbols of strings in Ck(A) and
8.V. , ...y &.v., be all of the strings which belong to Ck(A) and have a, as a head
ii) iitg i
symbol. Then, make
Al 8 ["11] (gll) (#)
1 [Vig] (€53)) (2.5)
' ERROR
al{vltl] (gitl) ()

Here, 8iij is the label and stands for

Ap if aivi'é Ck(A, up).

J
The program starting at the label, Ap, is made by the following procedure.

133
If G is ALL(k), there exist only one up, vhere a;v; € Ck(A, up).
(2) The folloving procedure P2(A,Hi) produces a program which confirms that the head
part of the remaining input string is really reduced by the production rule A—u;
vhen it is expected. Let u, = XIXZ “ee Xﬁ, Xj&V . Make
Ai | S1
. (2.6)

S
m

J.EZ or € V- T res v
X (*, k, $) (ERROR) or o (X, k, $)

h3
o
A
o
¢
d
o
il
)
{]
3
N
v7)
N
©

depending on xme.z or € V-I respectively. Here A ~uy is the kth rule of G and k

represents to execute the output corresponding to A — u The symbol $ is replaced

i
by RETURN or a label A# if n, = 0 in (2.2) or not respectively.

(3) The procedure PB(A) vhich produces the program deciding to continue or end the

left recursion is given here. Let bl’ cevy ba be all the head symbols of strings in
) v Mk(A), and b.W.,, bW.,, ..., bW, _De all the strings having b, as the head
X i 31 3 32 SARLY 3
symbol in L (A) UM (A). Then we make the following program:
At B[¥y] (g),) (#)
b1 Wiij] (giiy) # (2.7)
bs[Vsas] (gsas) (ERROR)
i=1, 2, ..., S =12 e 0y

The symbol giiy stands for the label A#/ if biwii’ € Lk(A, ul) or RETURN if
biwii.€=Hk(A) respectively. By assumption, b;j¥;;. belongs to only ome of either
X4, ') or ME(A). J
(4) Pinally, let the procedure P4(A, ui) be the program which checks “3' This

procedure is similar to Pz(A).

PFor ué = 1112 e Yn, the following program is produced:
sl s,
: (2.8)
S
n

where, Si (1 £i < n) stands for T, (%, #) (ERROR) or © (Yi, #) if Yié £ or V-2
respectively. Sn stands for T (*, q, A#) (ERROR) or ¢ (Yn, q, Af) if YAEZ or V-1
1

j is the g-th rule in G.

respectively. Here q signifies that A — Au
P y q sign

Theorem 1. A program that consists of

START | o (s, #)
b (EXIT) (ERROR)
1]
and programs produced by the procedures PI(A), P2(A,Ui), P3(A) and P4<A'“j) for all
A of V-Z, becomes a syntax analysis program of the grammar G with the entry point

134
START.

2.3 A Method of Optimization
2.3.1 Unification of statements

Suppose there are some statements in (2.5) or (2.7) which have the same symbol
in their pattern column but different look ahead strings.

Here, look ahead strings are used for branching only; By postponing the check
of look ahead strings until they are read, these statements can be unified. The
statements in (2.5) having a, as the < pattern > column are classified by S-parts.
Then erase all of the statements in the class which has the maximum number of ele-
ments. (if there are many maximum classes, choose any one).

Put one of the erased statement, eliminating its look ahead string, after the
last statement which has a; as {pattern >column. By this procedure the statements
which have different look ahead symbols but the same S-parts are unified. At the
beginning ERROR in the F-part of the last statement in (2.5) is replaced by #. Then
perform this unifying procedure for the statements which have &, as < pattern)> part
for i =1, ..., L. After that, the F-part of the last statement is replaced by ERROR.

In (2.7), symbols in< pattern) column are checked again at the action part of
the successfully pattern matched statement. Hence, the information of the < pattern>
column is used in order to decide which statement will be executed next. Let g be
one of the most overlapped labels in 8110 -+ 8sage Erase all the statements which
have g in the S—part, change the label in F-part of the last statement to #, and add
o(g) as the next statement.

Lemma 1. The program unified by this procedure is equivalent to the one which is

made in paragraph 2.2.

2.3.2 Postponing the pattern matching

After a pattern matching has successfully been done it often happens that the
same pattern matching is done at the S-part of the statement. Consequently the
statement is unified by postponing the pattern matching. The sequence of the state-
ments is called a production list if all of F-parts are # except the last one, and
the last F-part is ERROR or last statement is o(Sp). The following expression is one

example of the production list.

v (s,) (#)

1, 1
o 8 W (2.9)
Vn (Sn) (ERROR)

Let S-part of the i-th statement of (2.9) be (8iy, Sj,, ...). Here, Si; assumed to
be a label. If Wi is the pattern part of a sentence in the production list labelled
Si;, the following procedure is performed according to the last statement of (2.9).
1) Not o-statement: change F-part of the last statement to #, and change < pattern>
column of the i-th statement to O and place the i-th statement after the last state-
ment.

2) o-statement: if the S-part of the last statement is Si,erase the i-th statement.

If not, let Q be the S-part of the statement which has Vi as

135

{pattern >column in the production list labelled Siis and replace (S.) in the i-th
i
statement with (Q, S, .++). Procedure 1) is performed from the statement which has

the most overlapped label in 811’ s21’ sy Snl'

Lemma 2. The program unified by this procedure is equivalent to the previous one.

2.3.3 An efficient use of pattern matching information
By the use of the information provided by pattern matching, the number of
pattern matchings can be reduced.
w s vee .
(1) Let i (Sil, s sim)(Qil’) (2.10)
be a statement. If program §;; has the statement s which has Wi at the {pattern>

column and s has Sjl’ ceey Sjk at S-part column, (2.10) is replaced by
Wi (Sjl’ ooy sjk’ Siz’ ceny sim)(Qil’ cee)e (2.11)
Do this procedure as far as possible.

(2) Suppose there is a sequence of label ... S ey skl’ ... and each of S .

k1’ kj

has the form:

s v (sJ_) (RETURN) j =1, ooy L.

gl s
Then, add a new program labelled Skl""'skl to the original program and replace all

of the sequence of labels:

skl’ eeey Skl by Skl ven Skl ,

S

here

W oo Sl o S S e S ()
W, (8, S5 «oer S (H)

v (s1) (RETURN)

Lemma 3. The program unified by this procedure is equivalent to the previous one.

2.3.4 Erasing c-statement
A statement in which the pattern column consists of O is called a g-statement.
Let a O-statement be S || G(Sl, ceey Sn) and let the action part of the statement

which calls this O-statement be the form:

(9 «or Qo #1 Qpyr o) or (Tpy wey T, 8, Ty enl)

Then, replace these action parts by (Ql, ey Qk’ Sl’ ey Sn, Qk+1’ ...) or

(Tl, vees Tr’ S1s vees Sps T ...) respectively

r+1’
If there are #'s in Sl’ ceny Sn’ replace # by some new label e.g. NS, and attach
this label to the next statement of O-statement.
Repeat this procedure for all the action parts which all O-statements and then

erase all O-statements.

Lemma 4. The program unified by this procedure is equivalent to the previous onme.

2.3.5 Other optimization procedures
(1) Erase all the statements which can not be reached from START.

136
(2) If there is a statement Sk i Wk (Q, RETURN) (Q') or

Sl ¥ (0 RETURN) (#)

Q'“ .o
and there are some action parts which have the sequence of the labels ..., Sy, Sk,
Sm’ ra e , replace this sequence of labels by "eySy, Skm...“ and add the following
program to the original one.

Sem ... W (@ 8,...) (0,8)

From lemma 1, 2, 3 and 4 the following theorem is derived.

m*

Theorem 2. The program produced by the procedure in 2.2 remains equivalently after
taking procedure 2.3.1 - 2.3.5

3. EXAMPLES

By ﬁsing an Earley's example the above elgorithm is demonstrated. The Syntax is

given in Table 1 and a program made by the procedure in 2.2.2 and then optimized

using 2.3. is given in Table 2.

Table 1 A Syntax of Simple Arithmetic Expression

S i< E 1 T-T*FP 6
E-~T 2 F—P 7
E—~+T 3 F-F} P 8
E-E*T 4 P-i 9
T —~F 5 P~ (E) 10
Table 2 A Simplified Program
START |f o (s,#)
4 (Exit) (ERROR)
s i i (*,#) (ERROR)
- (*,E,1,RETURN) (ERROR)
E " i (*)PI'I’P#,s}T#!J’E#) (P!7’P#l5’T#’2’E#)
E# U b (*,P,7,F#,5,T#,4,E#) (RETURN)
T# 4 * (*,P,7,F#,6,T#) (RETURN)
Ff] t (*,P,8,F#) (RETURN)
P f i (*,9,RETURN) (#)
((*,E,P4) (ERROR)
P4 I) (*,10,RETURN) (ERROR)

4. CONCLUSION
Presented here has been an algorithm which automatically generates syntactic
analysis programs for extended LL(k) grammars. This method offers the following
features:
i) It is not necessary to use a stack at the pattern matching process of the
syntactic analysis programs for input symbols.
ii) Nonterminal symbols do not appear in the analysis programs.
iii) It is only necessary to do pattern matching for strings with the length one

except look ahead strings.

5. REFERENCE
1) Lewis P, M. and Stearns, R. E: Syntax-directed transductions.
J. ACM 15. 465 - 488 (1968)
2) Backes, S.: Top-down syntax analysis and Floyd Evans Production Language, IFIP
'71

