118
A New Heuristic Test Sequence Generation
Algorithm for Sequential Circuits

Mitsukuni Tsuboya,” Goro Amamiya,” Toshihiro Arima* and Jiro Okuda*

1. INTRODUCTION

With the advent of LSI, the problem of testing chips and packages with logic
elements is becoming increasingly difficult. To overcome the difficulty, there are
two approachs; one is to design easily-testable circuits, the other is to develop
powerful algorithms for the test data generation of logic circuits. In this paper we
are concerned with the test data generation. Up to this time many researchers have
worked in this field, and published many papers, the paper about the D-algorithm
which has been proposed by J. P. Roth is especially well known. In this paper a new
algorithm, named MOM1 algorithm, is introduced. The algorithm is used to compute
tests to detect failures in sequential logic circuits. It is a heuristic and itera-
tive procedure which is based upon new logical operations derived from Boolean
algebra. This paper describes the basic theory and the procedure, followed by a
discussion of experiences with a program of the procedure is given.
2. FAILURES AND TESTS

In most cases a logic circuit that is out of order has a "stuck-line" in a solid
failure; stuck-at-1 (g-a-1) or stuck-at-0 (s-a-0). We assume that a logic circuit MO
has no failures and a logic circuit M1 has a solid failure in MO. The problem is to
find an input pattern T, such that the output pattern MO (T) for MO differs from the
output pattern M1 (T) for M1, i.e. MO (T) % M1 (T). Such an input pattern T is called

a "test" for MI. We can describe them in the language of Boolean equations.

X: a vector of input variables.
MO (X): a Boolean representation for the output of MO.

M1 (X): a Boolean representation for the output of M1.

This pa[;e;r first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 16, No.2 (1975), pp. 108~114.

* Engineering Department, Electronic Switching Div., Nippon Electric Co., Ltd.

119

To find a test T for M! is equivalent to solving the Boolean equation
MO (X) @ M1 (X) =) where @ is the exclusive-or operator.
Unfortunately it is impossible to solve Boolean equations with many variables

within reasonable computer time.

3. GRAPH REPRESENTATION OF THE LOGIC CIRCUIT

In general, a combinational logic circuit is documented in Boolean equation
form, using Boolean operator, namely, the logic sum operator, +, the logic product
operator, ., and the logic complement operator, —. A graph is then obtained from the

equation by translating logic sum and product into parallel and serial connections,

respectively. For example, the Boolean equation

y - (x? + x2).(x1 + x3) +x2.x3 is represented to Fig. 1 or Fig. 2. In fact, Fig. 2
is directly derived from Fig. 1, as y—gSmF-TZ, we can obtain the edge e5, as shown
in Fig. 2. Now, every consistent chain in the graph is a term in disjunctive can-
nonical form. Therefore such a chain derives a solution of the equation y = 1. For
instance, a chain ele4e5 corresponds to a term x1x3x2 = 1, and it derives a solution
%1 = 0, x3 = 1, x2 = 0. We can get such a chain by method as shown Fig. 3, like (a)-
(b)-(c)~(d) or (a)-(b)-(e)-(£f)-(g), in later case a chain e2e3eb derives another

golution x2 = 1, x1 = 1, x3 = 0,

T =

x %
%

x 9s L3 (e le

5 y e o
nlaa)n = an = z
o (e %y i
§ - % .
L}
» (0] (3] [C]]

Fig.l The circuit model

0.,
2 &n) U
;
- Al
5l — =fa x
nia % o
(@ W lg)

Fig.3 Consistent chains

graph process
Fig.2 The graph model

120
4. THE NEW LOGICAL OPERATIONS

In this section, the new logical operations derived from Boolean algebra is
briefly discussed, and the method for finding a solution of the equation without
a graph is shown. There used to be three values {9, 1, u} in logical operations: O
false, 1 true, u don't care. In our logical operations, six values {0, 1, 2, 3, 4, 5]
are assumed:
Assumption 1
(1) 0 and 3 indicate false, 1 and 4 indicate true, 2 and 5 indicate don't care.
(2) 2 can be changed to 3 or 4.
(3) 3 and 4 can be changed to 1 and 0, respectively.
To operate these values a definition is introduced.
Definition 1
A+ B= (at + bt a2 + b2 a3 + b3 a4 + b4 a5 + b5 a6 + b6)
A . B = (al.b! a2.b2 a3.b3 a4.b4 a5.b5 a6.b6)
Where A = (al a2 a3 a4 a5 a6b), B = (b1 b2 b3 b4 b5 b6) indicate Boolean vectors
and ai, bi = 0 or 1. Here special vectors are assigned to the gix values.
0 = (000000), 1 = (111111), 2 = (111000), 3 = (100000), &4 = (111011), 5 = (010101).
But seven more values must be introduced so that the operations are closed in
these values.
6 = (010001), 7 = (110101), 8 = (010000), 9 = (111101), 10 = (110000), 11 = (111001),
12 = (110001).
For example 3 + 5 = (100000) + (010101) = (110101) = 7. For convenience the set
S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is divided into subsets as below:
Definition 2
st = {1, 4}, s2= {2, 9, 11}, 83 = (3, 7, 10, 12}, 84 = {0, 5, 6, 8},
st = {0, 3), 52 = {2, 8, 10}, 83 = {4, 6, 11, 12}, S4 = {1, 5, 7, 9).
We can apply operations to these subsets: S1 + S2 = S1, §S1.S2 = S2 and so on.

Here Assumption 1 can be rewritten as Assumption 2.

121
Assumption 2

(1) St indicates true, SO indicates false.
(2) S2 and S2 can be changed 4 and 3, respectively.
(3) S3 and S3 can be changed 1 and 0, respectively.

Now we show an equivalent method to the method using a graph as mentioned above.
Using the circuit as shown in Fig. 1, we take first expressions such as x1 = x2 = x3 =
2, and g1 = g2 = g3 = g4 = g5 =y = 2, Applying Assumption 2 (2), we select the path
y-g5~-g4-x2 which corresponds to selecting of the edge e5 in Fig. 3 (a). And we change
%2 to 4 (true), i.e. x2 = 3. Then g! = g2 = g3 = g5 = y =2 and g4 = 3. Similarly
applying Assumption 2 (2) we can get x1 = 3, x3 = 4 which correspond to the edges efl,
e4, respectively in Fig. 3. Here a solution x1 = false, x2 = false, x3 = true is
derivered from Assumption 2 (1). Incidentally we assume x1 = 4, x2 = 3, x3 = 2 and
gl =3, g2 =4, g3 =4, gh =3, g5 =3 as shown in Fig. 4. Applying Assumption 2 (3)
because of y = 3€S3, we select the path y-g5-g3-g1-x2 which corresponds to selecting
of the edge e2 in Fig. 3 (e). We change x2 to 1 (true). In this way another solution
x1 = true, x2 = true, x3 = false is derived.

5. MOM1 ALGORITHM

This gection discusses MOM1 algorithm which finds a test for a failure of logic
circuit. As mentioned above, a circuit M1 has a failure in MO which has no failures.
We assume that a representation a/b indicates a pair of values: a and b are the
values of a logic element in MO and M1, respectively. D and D indicate as below:

D = a/b if a = true and b = falge, i.e. D = S1/51.
D = a/b if a = false and b = true, i.e. D = §1/s1.

If the value of a circuit-output is D or D, it is equivalent to MO + M1 = 1. Now
we show MOM1 algorithm using an example as shown in Fig. 5: the circuit has a s-a-1
failure of element g1 in Mt.

(STEP 1) We take first expressions such as x1 = x2 = 2 (don't care), x3 = 5 (don't
care) because the value of y is unknown. And gl has a failure, then gl = 2/1, g2 =
2/2, g3 = 9/5, g = 2/9.

(STEP 2) Since g! = 2/1€52/S1, we should change gi to D. Noticing gl in MO we back-
trace such as gi-x2 in MO and change x2 to 4. Then gi = 3/1, g2 = 4/2, g3 = 1/5,

gh = 3/9.

122
(STEP 3) Since g2 = 4/2€S1/S2, we should change g2 to D. Noticing g2 in M1 we back-

trace such as g2-x1 in M1 and change x1 to 4. Then g! = 3/1, g2 = 4/3, g3 = 1/5,
gh = 3/1. Here y = 3/1 =D and a test x! = true, x2 = true is found.
6. IMPLEMENTATION

The algorithm, called MOM! algorithm, was implemented by PL/!1 using a computer
NEAC 2200/500. The system has MOM! program which generates tests, and also has exact
simulation program which guarantees the quality of the tests. Table 1 shows the com-
puted results for some sample circuits. From our experience MOM! algorithm is
effectively applicable to sequential circuits with under 500 logic elements.
7. COCLUDING REMARKS

Comparing with well known D-algorithm, the algorithm is a heuristic and construc-
tive method, while MOM! algorithm is a heuristic and iterative method. So both have
advantages and disadvantages. The most advantageous feature of MOM1 algorithm is that
it computes with a difference between don't care values 2 and 5: value 2 indicates
don't care for circuit-input, value 5 indicates don't care for unknown of flip-flop or
loop.
8. REFERENCE
(1) J. P. Roth: A Heuristic Algorithm for the Testing of Asynchronous Circuits,

Computer (IEEE), vol. 20, No. 5, pp. 639 - 647 (1971).

Fig.l4 Backtracing Fig.5 The circuit with a failure

No.of No.of NO,of No.of |CPU |Detection|limited time

Sample logic f11p-flops| total total |time [ratio for a failuer
elements failures| tests | (min){(%X) (sec)

Sample 1 66 4] 194 35 1*| 100 2

Sample 2 106 2 278 31 4 9?7 10

Sample 3 273 3e 892 109 4ye| 88 10

Sanple 4 1464 228 5476 165 130 63°¢ 60

® CPU time including simulator's
«® Detection ratio for only 222 falluers

Table ! Computed results by NEAC 2200/500

