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An Algorithm to Locate the Greatest Maxima
of Multi-variable Functions

Takao Tsuda* and Mieko Sato*

Abstract

In this paper we propose an algorithm to locate the greatest maximum of a multi-
peaked function of many variables.

The main ingredients of this numerical method are the relative peaking of each of
the maxima by use of an exponential function and the numerical multidimensional
integration.

Detailed discussions are given to some computed examples that evidence the

superiority of the scheme proposed to simple random samplings.

1. Introduction
We propose in this paper an algorithm to locate the global (or greatest) maximum
of a multi-peaked function defined in the k-dimensional Euclidean space (k >> 1).
For functions, each with a single peak, various potential methods have been
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successful even in multi-dimensional cases. For multi-varisble functions, each having
more than one peak, however, global search is mandatory for locating the global
maximum. In this case those methods that are useful for singly-peaked functions often
result in local maxima before reaching the desired solution, if the starting positions
are not appropriately selected. In view of this the only method for multi-peaked
multi-variable functions is random sampling. In this paper, therefore, we propose a
method more efficient than random sampling. Being more efficient means less frequent
function evaluations. Note that most of the computation time is spent for function
evaluations.

In the case of a few dimensions, some pathological functions are often used for
testing purposes. We do not consider such functions; but rather, those analytic
functions that can be approximated by multi-peaked multinomials are treated.

The main characteristics of the algorithm proposed are the relative peaking of each
maximum as combined with numerical multiple integration. The scheme of multiple
integration is such that the precision is weakly dependent on the number of
dimensions, thereby giving results much better than simple-minded random sampling with
increasing number of dimensions.

It is difficult to assess the convergence properties of the iteration scheme
a priori in our case of global search. The fact is, however, that the convergence

is satisfactory insofar as the numerical experiments are concerned.

Thi;ﬁ;riﬁr;;appeared in Ja;lese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 16, No.1 (1975), pp. 2~6.
* Department of Electrical Engineering, Hokkaido University
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2. Algorithm

2.1 Outline

Let the object function be F(x;, X, «ev » X ) [ ZF(x) 1 (k> 1).
In the rectangular domain D = Eal,bll x Eaa,bzl X .. X Eak,bk] = Dl x D2 X .. X Dk
we look for the point .3:‘. approximately at which the function assumes the greatest
value. Another function such that

f(x) = expC C(F(*}’(-)-FO) bl (1)

is defined, where constants ¢ (expansion coefficient) and F. (shift constant) are

0

determined in such a way that the exponent of eq.(l) is about zero for F(x) = Foin

(observed minimum; x e D) and does not cause overflow even for F(x) =F _ (ocbserved
maximum; x e D).

We call this operation "shift and expand", which, as seen from fig. 1 , performs
the relative pesking of maxima in domain D , i.e. differentiates the highest peak
from the other lower peaks by mapping function F to the newly derived function f .

After having carried out such "shift and expand" procedure, we compute, for
i=1,2, ... , k, "

xj(,l) = !D il C(F(‘U-FO) 1= (2) compiter fF———— -~~~ ~-

[y expl e(F(x)-Fy) 1 ax,

|

which then is an aspproximation to )_ci , because the
exponential functions in eq.(2) is almost + « in
the neighborhood of x = X . For the multiple

integration, use is made of the numerical scheme that

has previously been developede).
xil) is the first approximation to )-Ci s Which

f— Range of f(x)

L

N

1) (1) (1)
D§ "”'Dk=Dk ,D=0D .
Successively the domain of search is contracted.

we denote Dl =

By defining Range of F(x)
[,8) 0(x) expl c(F(x)-Fy) 1 ax, J I

(3) rmmmmy
ID(p) expt C(F(-i)-FO) 1dx Range of c(F(}&)-FO)

= 1(p)

2T 6(x) D fig. 1
eq.(2) is then Procedure of SHIFT-AND-EXPAND:
x = ) The range of F(x) is expanded
i 17 to the new range of f(x) by
If one computes exponential function.
(1) . I(1) 2 2, (5)

C e, € - (re x, 3
then Gi(l) gives the width of the highest peak along the length of the xi—coordinate

together with the influence of the adjacent lower peaks on the current estimate of J'ci.
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is indicated by the superscript 1 . Similarly, iy o - J,‘
T
[
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|
|
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(2k + 1) multiple integrals involved in eqs.(l4) and (5) are evaluated with common
sample points, hence with common function values of F .

The interval of x, 1is then reshaped to

i

p{®) o Vo1 (1)) 461D (6)

i i i i i
and the computation of (4) and (5) is carried over again. Here o 1is a positive
constant. It should be considered that D§l)§ Diz) and Di2) be not much too small

compared with Dj(_l) . This consideration is necessary to prevent the true value )'ci
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After the repetition of the above procedures, it is expected that
D(l)ED(e)Q...—)O, (7)
and .551),.552), .es will correspondingly give better estimates of X . If (T7) is

not the case, then there are more than one peak comparsble in height.

2.2 Details of the algorithm

1) Zero~th order approximation xio) (1=1,2, ... 4 k)
(o) _

Do steps 2) and 3) with D D ; compute
SN RN (8)
(0) o (1),2
The value of x; is used when estimating (Gi )° in eq.(10) of step L).

(1) _ pl0)

Put p=1 (and D for this case only) and do steps 2), 3), 4), 6) and 7).

2) Preliminary computation

The gross range of FQM) is surveyed with random sampling of points in D(p) .

The number of points sampled is 100 X k . Denote the minimum (maximum) value of

F(x) thus obtained by Fmin (Fmax) . For precsution, F__ is taken tobe F_ _ +

(Fmax - Fmin) , otherwise the exponential function of the integrand may easily cause

overflow., If, eventually, an overflow has occurred, then step 8) sees to this.

3) Shift and expand

As shown in fig. 1 , the range of F 1is transformed from [ F s F J to
min max 10
Lo, c(Fmax- FO) 1. FO = Fmin and ¢ is taken so that expl C(Fmax- Fo) 1is 10
below the overflow level,
4) Improvement of the estimates
Compute
xip) - 1P x, 2 9)
( 6§p) 12 = 1) (xi-xip‘l))z 1- (1P xi-xip'l) 1)2. (10)

(1 =1,2, ... , k)

There is good reason to compute (10) instead of

( 6§P) )2 < 1lp)g xf 1 - (1P x, 3 2, (11)
which will incur a cancellation of significant digits with increasing accuracy of the
estimates. In eq.(10), the mid-point of the range of integration approximately agrees
with the position of the highest peak (i.e. the most recent estimate x§P-1)).
By this consideration the difference between the first-order moment squared and the
second-order moment is retained more accurately than otherwise.
5) Convergence criterion

The computation is terminated when d 1is below a, (say d, = 10_5), where

a=] tr®) o)y pPY) (12)
6) Contraction of the range of integration

If dc < d , then the new range for x is computed as

i

D'(p+l) = x.(P)_ (IG(P), x.(P)_'_ as_(P) 1. (13)
i i i i i

a is a positive constant (say o = 2.0)%*,

* The choice of o = 2.0 is not without reason. In case of the peak being
like a normal distribution, the position of this peak is within the interval
with probability greater than 95 % .
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Conversely, when

(p+l) ( ) , the interval is trimmed in such a way that D

(p+l) p®)
6{P) 5> sm*1) (14)

(p+1)’ it is possible that

the solution ii is outside the interval D§p) . In order to keep the interval
length (denoted by ID(p)l for Dgp))
is considered for the contraction ratio lD(p+l), / ID(p | (say B = 1/3 ~ 1/2).
Namely, the wider interval is chosen, from either this case or the case of eq.(13).
Also let the relation D(p) Dip+1)
i=1,2, ... , k.
7) Repetition

Increase the value of p by one, return to 2) to perform the preliminary

resulting in some orders of difference between Gip) and 6

from rapidly decreasing, the lower bound B

hold. The above procedures are followed for

computation over the intervals determined in 6). Using the results obtained, do the
shift-and~expand of 3) and then 4), 5), 6) and 7).
8) Revision of the expansion coefficient ¢

While computing (9) and (10), some overflow may arise in the exponential functionms.
In such cases, the value of ¢ 1is corrected so that the overflow will not occur.
Retaining the current value of p , return to the beginning of 4) and go over the
computation again.
9) The lower bound B to the contraction ratio is an arbitrary parameter externally
defined. A wise policy is therefore to try recalculations with different values of
B ranging over 1/3 to 1/2.

3. Numerical experiments
The following function is considered.

f(xl, Xys eee s xs) = fl(xl) x f2(x2) x f3(x3) x £, ) x fs 5)
fl(xl)=xl(xl+13)(xl-ls)X0.0l, fa(x2)=(x2+l5)(x2+l)(x2—8)xo.01,
f3(x3)=(x3+9)(x3-2)(x3-9)x0-01, fh(xh)=(xh+ll)(xh+5)(xb-9)x0-01,

f5(x5)=(x5+9)(x5—9)(x5—lO)XO.01.

Throughout those examples shown below, each '

)

numerical integration is done with 2500 sample

£
points (or function evaluations); 500 sample g z
points for the preliminary computation; the §4
value of B equated to 1/3. b : o =
[Example 1] Global maximum interior to the ! 4# L ’ jm
intervals; domain of search =10 < X £ 10 fig. 2
(1 =1, 2, ... , 5). In this case there Convergence in Example 1
are 2" local maxima and 2" local minima. (~—-—: solution)
X X, %3 x), x57 fmax
Solution 8.7564 -9.3582 -L,5720 3.5921 ~-2.8400 | 2Lu16.03
Computed result | 8.7597 -9.3613 -4.5716 3.5927 ~-2.8428 | 24416.01

T iterations led to convergence. See fig. 2 for interval contractions.
[Example 2] Global maximum at one end of the intervals. .

i) Domain of search -10 < X <8,-10¢ X, <1, -10< X <10 (1 =3, 4, 5),
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X
1 X Xq Xh xq max

Solution 8.0 11.3 -L.5720 3.5921 -2.8L400 | 2760k,21
Computed result| 7.9999 -9.3586 -L.5695 3.5923 -2.8406 | 24139.83
Convergence was attained after 9 iterations. The estimate for X5 has
significantly deviated from the solution, because the object function very slightly
differs between x. = 11.0 and x, = -9.3586.

2
ii) Domain of search -10 < x. < 8, -10 < x, £12, =10 < x; <10 (i =3, b, 5).

1
X, X, X X, X f

1 2 3 4 5 max |
Solution 8.0 12.0 =4,5720 3.5921 -2.8400 | 41ko6. 32
Computed result| 7.9999 12.000 -=4,5719 3.5929 -2.8406 | 41406.31

Convergence was attained after 11 iterationms.

See fig. 3 for interval contractions. The

global maximum at x, = 12.0 is significantly

Iy B z T2

———

greater than other interior local maxima.
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4. Concluding remarks

Iteration

- W s 3 @

The main points are summarized as follows.

(a) Global decision is indispensable for

processing the cases of multi-peaked functions.

To date the only method to find the approximate

solution, or at least the first-order

fig. 3
approximation, has been the random-sampling Convergence in ii) of Example 2
(—-—: solution)

technique. Our attempt in this paper is to
propose a method more efficient than random sampling-— more efficient in the sense
that less frequent function evaluations are required to attain the same objective.

(b) At the moment it is difficult to give theoretical convergence criteria. Numerical
experiments, however, indicate that the proposed algorithm works well, especially for
a problem such that the global maximum is well inside the domain of search.

(c) Those problems that the global maxima occur on the edge of the rectangular domain
of search are often baffling.

(d) Where the greatest maximum is scarcely higher than the next highest peak, the
volumes that support the respective peaks are also close to each other in magnitude.
Considering this situation, one may derive some sufficient condition for the
convergence of the iterative computation. To estimate the magnitude of the above

partial volume is as difficult a problem as the solution itself.
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