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Arithmetical Method of Transcendental
Functions
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1. Introduction

Usually, the Maclaurin's expansion (1) or the best approximation (2) are well known
as a programming algorithm for programmable calculators. In the scientific calculator
whose transcendental functions were pre-stored, Maclaurin's expansion, Pseudo Division
and Pseudo Multiplication Process (3), CORDIC method (4) (5) or STL (Seguential Table
Look Up) method (6) are frequently utilized to execute the microprogram. From the
view point of the execution time, Oyanagi, Watanabe and Hagiwara have reviewed the
above algorithms listed in the reference., These methods can attain higher accuracy
and faster execution of the computations. However, when these methods are implemented
with the BCD code, more memory area should be recuired to store the tables of pre-
computed constants than with the pure binary design.

In the recent situation in which such electronic component as Large Scale Integra-
tion can be utilized for the calculator design, the algorithm which the calculator can
be designed with a few chips of LSI is being required except for the high class
programmaeble calculators. )

The algorithm described in this paper is proposed for computing the transcendental
functions (exponential function, trigonometric function, etc.) practically.

Although the proposed algorithm basically depends upon the Euler's method, it has a
feature that the numerical integration is incrementally conducted with an increment h
by exchanging the approximate equations at the odd and the even step respectively.

In order to get the inverse functions,the accumulation of increment is used as the
first approximate value required for the Newton's method. Prior to the calculator's
design the propoaofi algorithm was simulated by IBM computer to determine the register
length and to lnvestigate the error trend of each function. The feasibility of this
algorithm has been confirmed by designing the calculator.

2. Concept of Algorithm
When the function values are required for the set of x=>£, x:h. ----- , x.-mh
(h: increment), the function f(x) is expanded for x..'.,lx;h as follows.

m

£xpth) = 2, —f—%',ll " o))

vhere xf x4nh (n=0,1,2,----- ,N)

" This paper first appeared in J;p‘anese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 15, No. 11, (1974), pp. 850~856.

* Business Machine Group, Industrial Instruments Division, Sharp Corporation
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If f,(x) is placed by fa, £ is given by the equation (2)

n
foei= m%* = ] (2)
When the equation (2) is approximated by the 1lst term through 3rd term, each fns4:

becomes

fagy= fa + BEh + 0’1} (3

The equation (3) is one of form of the mumerical integration.
Instead of the equation (3) this paper proposes the approximate form modified from

Fig. 1.
because of
Xan-
j £1(x) d&x ¥ h(g, 4 bE, ) ()
Xan-a
Xan
[ £(x) dx % hfe, (5)
x

fan-r™ San-g+ DL, + b5, )
fon = fou,+ hian., (6)

f‘...B fm+ hfu-.
for = fpey+ B(f30.,+ hifn) (7

are realized.
The equations denoted by the above equation (6) or
(7) are approximate equation f; for odd number i and

for even number i. These equations are more effective;
to reduce repetition of the numerical integration than
the case of equation (3). It is estimated that the
acouracy is about the same as the equation (3).

When the inverse function x=f (y) for given h is
computed by equation (6) or (7), the following proce-
dures are considered in case of monotone funotion.

Procedure 1.

The first step 1s to choose x;(ogigN) so as to satisfy
the condition f(x;)<y (f: momotone increasing function) or the condition £f(x; >y (£f3
monotone decreasing funotion), and then goes to procedure 2.

At this time, makes§ex;+h (=xi4)

Procedure 2.

If the condition f(§)>y (fs monotone increasing function) or the condition f(§ )<y
(f:1 monotone decreasing function) is realized, obtained}(l:s) is approximate solution
for £(y). If the condition f(§ )<y (f:+ monotone inoreasing function) or the condi-
tion £(§)>y (f: monotone deoreesing function) is realized, the procedure 2 is
repeated with new k(t«§ +h).

The acouracy obtained by the above procedure 1 and 2 is obviously the same order
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3-4 Execution Sequence
Hereunder, the execution which was based upon the concept explained in the above
section is represented with Fig. 2 through Fig. 5. In each flow chart, the increment
h is equal to 10"and K is a constant number for x. X,Y,Z,W, and ¥W; aré set of the
register to be used for execution.

The L and M are the conditional memory to change the arithmetic equations at the
odd step or the even step.

4, Simulation

Prior to the application of this algorithm, it is necessary to determine register
length to be prepared for calculator design. At the same time, important point is to
evaluate the accuracy of the each transcendental function distinguishly. For this
purpose, each function has been simulated as outlined in the following.

4-1 Outline of Simulation

To investigate the relation between accuracy and register length, the behaviour of
each register which stores function value should be properly simulated.

The simulation has been conducted to know what the length of register is optimum.

One of the factors related to accuracy is register length. It is considered that
if the increment of K=10™" were selected to get h order accuracy, the register length
would be 4m. Three kinds of register lengths 4m-1, Um and 4m+l were sssumed to
simulate that the length 4m is appropriate. The simulator has been constructed with
pseudo variable length register to input data of the length. The set of variable
number with suffix, X(M),-----,X(1) constructs one of the each necessary register, and
the contents of the register is operated in this simulator as though each variable
number with suffix were one decimal number.

In order to properly execute the flow chart mentioned-above, the simulator involves
the equivalent arithmetic instructions which are such hardwares as trasfer, right
shift, judgement, add/sub and division. The arithmetic procedure is controlled by
these basic instructions. After the completion of simulation flow which was finalized
by changing the register length and the repetition time, the contents of register,
which store the function value and the position of decimal point, were printed out.
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Thus, it is possible to correct the first approximate value by Newton's method. In
other words, for approximate value obtained by the above mentioned procedure,

78 { 2N-2 (Approximate value is finally computed from f,y

2N-1 (Approximate value is computed from f,,.,

are defined.

The equation (8) or (9) becomes approximately the solution of the inverse function
f-'(y). The higher order of h in the acouracy can be achieved firom the Newton's
method.

x = Nh - —‘:Biq}-’ (f:s monotone increasing function) (8)
I3
x = Nh + —'bﬁ!- (f: monotone decreasing function) 9)

3. Aplication to Each Function.

In this section, some of examples which execute the algorithm described in the sec-
tion 2 are explained.

3-1 Exponential Funoction (y=e*)

In this case, as y=y'sy" is conoluded, each y; is given as the below.

Yanet™ Taneg + D(Ygn-a + h¥an-q)
Yan = Yap-y + Wapoy (10)
vy Fe*

3-2 Trigonometric Function (y=sin x, z=008 x)
In this case, as it is similar to the exponential function, each y and z; are
given as the below.

Yapet = Yan-a + h(Z;0.s ~h¥yn-o)

Yan Yan-i + DZap., (11)
Zyn-) = Zapq — N(Fyp-g +hz,pe)

Zen = Zan-y - hygq.,
Yy % sin x
zy € cos x

3-3 Hyperboric Function (y=sinh x, z=cosh x)
In this case, the following equation is obtained.

Yan1 = ap-at B(Zan-a + h¥y,.y)

Yan = Ygpoyt h2Zap-y

Zaaer = Zanat W(Yan-2 + h2ax-s) (12)
Zan = Zgner+ W¥an-i

Iy % ginh x

zy € cosh x
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The simulated result was compared with the numerical value generated by the IBM-360
computer, and it was confirmed that the result is proper to apply to calculator's
design taking the practical use for design into account.

The m=3 was chosen as one of value m. All of the functions described in the sec-
tion 2 have been simulated in accordance with the above method. It was made sure that
the register length of Um was proper to obtain the h order accuracy.

4-2 Error trend by Simulation

The relative error is meaningless in case that true value T for x is equal to zero.

For example, vhen y=sin x

ey | _|-ax cosxl
I y sinx (13)

Since the function sin x is nearly equal to zero at the neighobourhood of x=n:,|ay/y|
becomes too large number. So far as the register length is limited, it is very
difficult to assure constant accuracy by the relative error. The same figure causes
in the logarithmic function at the neighbourhood of x=1. It depends upon particular
characteristics of these function. A calculator by the proposed algorithm was
designed with twelve digits register and with fixed decimal point. The error trend
was evaluated by the number of significant digits, which are similar to the case by
the absolute error. The range of maximum error can be theoretically denoted.
However, it is far more important to investigate actual error trend in the calculator
design. Considering the application of this algorithm, it was simulated with m=3 from
the standpoint of practical design.

The range of x, whose significant digits 6 ies obtained, is summarized in the

following table 1.

bt 2
fo0mes T et B ot e O i
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The error trend for ¢*, sin x and tan-'x are plotted at Fig. 6. 1In case of %
the trend of over correction or under correction by this algorithm is shown remark-
ably. The error trend for tan x which was plotted at Fig. ? is improved in the
neighbourhood of x= ®/2.

It depends on the reason that 0.99999987 was selected as it becomes A=l experimen-

tally.
That is, when x=dX
AY|. | 29ax |
l Y sindax (14

The equation (14) is obtained from y=tan x. The error trend of sin'x is descontinuous
as plotted at Fig. 8. It depends on the correction affect by the equation (8). The
error trend of 1n x is satisfactory in the range of 0<x<10" as shown in the table 1.

The error equations for e*, sin x and cos x are theoretically led as the below.

(a) Case of e* :

Now, when ¢ 2 (1 + h)(1 +h + l:')

each y; are

Ymn = e (15)
Yapmy = (1 +nh+ }?)e(""’lnr

The error equations (relative) are
1 - en(lnr—zh) 1o (aens h’)e(n-nlnr

respectively.

-3
For instance, if h=10 when the range of x is 2nh< 8, the relative error becomes
less than 10-‘.
(b) Cases of sin x and cox x:

. ,
hll-lz;:‘z . | ¢ /1. n®

When 02 tan-l
each y and z are
Yen = -z'sin n@
Yene1= 1"" {(h’- 1)cos(n - 1)@ + hcos(n - 1)9} (16)
z”=l"col n@
Tgpey = ll"'{(l - Wcosl(n - 1)0 + hsin(n - 1)9}

The error equations (relative)

are
1 +1"sin n@/sin 2nh
n=i 2 . .
1-1 {(h - 1)sin(n - 1)8 + hcos(n - 1)6}/51n(2n - 1)h
1 - '1' cosn@/coe 2rh
1- 1"" {(1 - B)cos(n - 1)0 + hsin(n - ‘1)9}/coa(2n - Lh
respectively.

For instance, in the range of Ox< 2%, if h=10-3, when the range of x is 2nh 2K
(except the neighbourhood at X.and-2X ), relative error becomes less than 10 in case
of 8in x and the range of x is 2nh<2X (except the neighbourhood at X/2 and 3K/2) in

case of cos x.
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5. Conclusion

The algorithm proposed in this paper is mainly considered for the pre-stored func-
tion of the calculator. Its objective is to get the function value by simple method.

As studied in this paper, it is difficult to theoretically analize the error on
this method, because the numerical integrations are proceeded with the increment step
by step. Therefore, in case that the calculator's design is performed, the simulation
can be done to determine the register length and to investigate the error trend
because the theoretical analysis is insufficient. Considering the application to
calculator's design, the accuracy was investigated in detail with the value of m=3.

In the past, the study on the numerical analysis had been of importance for the
software. For this reason a large number of electronic cimponents have been required
for the design of the calculator with the transcendental functions. But if the
calculator which can perform the basic instruction of each step shown in the flow
chart of Fig. 2 through Fig. 5 is equipped with hardware, it is feasible to reduce
electronic omponents required for the design.

As well known in general, it is necessary to use this method after the scaling was
processed, but its points are eliminated, since the emphasis is mainly placed on the
contents of the concept for the algorithm in this paper. Only the necessary data for
explanation are attached, because the volume of data forosimulation results is huge.
Please note that such method can be considered that 1n x =Jf2%. can be obtained by the
numerical integration (Simpson's formula) and then e can be obtained from ln x by

Newton's method.
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