31

Fast Fourier Sine and Cosine Transforms

Tatsuo Torii*
1. Introduction

In this paper, we propose methods of the fast Fourier sine and cosine transforms
utilizing properties of input data such as reality and symmetry.

Fourier coefficients of a complex valued function X(t) of period 2T are defined by

| 2L
=g | XOupeiktydt , K=o,1, - @
°

.4
The integral of Fourier coefficient is approximated by the trapezoidal rule of

i

N sample points:

[ o
C*—T )(‘ W()k) N 0SS k<N, (2)
0 k<N
where

— 2T .
X; = X(=540),

“— Bb -\ = ol
WE) = exp(485)) = WEp.

For a composite number Nz f..-V, , the number of complex multiplications can

be reduced to N(f‘.fr‘f...ﬂ'.) by Cooley-Tukey algorithm..) We have already shown in a previ-
ous paper that the number of operations of sine or cosine transform based on the
trapezoidal rule can be reduced to about %(f.gr"---fr,) where N 1is not necessarily a
power of 2. Further, our algorithm will be applied to the approximation and the inte-
gration of periodic functions. The method may be considered as the fast generalized

2,3)
Clenshaw-Curtis integration.’

2. FFT table
We consider an interpolation of X(t) by a trigonometric polynomial on N points
—%(jfd) , OSj<N,
where @ is a nonnegative constant.
Let A;s be coefficients of interpolating polynomial of X(t). Then, we have,
by the definition of A.ﬂ

= —
Ax= I 2 Xiu W(R(j+4)) |, o< k<w, (3
0$;<~
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where
Y] w; 227 2\ -
. fed 233( ¢k . — AR .
x,fd Xl N (11’ )) ) W(Jf*) Lll?(-h—“).'d,) .
The solution of the above linear simultaneous equations can be obtained as

=——Z Xiww W (K(jtd)) , OSK< N, (a)
o‘ <N )
from the discrete otthogonality of trigonometric functions. This formula is usually

called discrete transform of X(‘t) .

In the case d=—'2.~ , the formula (4) is evidently the midpoint rule for the

integral of Fourier coefficients, so we denote AAL by B‘ .
In the case ({ = 0 , the formula (4) is nothing but the discrete transform based
on the trapezoidal rule, i.e., Ak= Ck .

Assume that A is decomposed into N= hr--- K . Putting
N¢= N" = ' R
Ny = hn---r, ﬁl = i
12 o, l»"N/N"1==|.2’...n’
and rewriting, for brevity
X(jra) = Xjva | Alk) =Ax,
we define a table

X, k) = 3 X(rghro) W(iegien)®

o‘t(N‘ (5)

0L j<Ny, O0SK<N,.
After a troublesome algebra, we have a recurrence formula
x°(¢;+n, 0) = X(jta)
Xt (,m,xvsn,..) W‘;M)"“"Z x"'(,#tﬂ,ﬂ Jc)w(ﬂ-—t)

ost<n ’
0$j<,, 0< k< N,y . (6)

from which we obtain all the coefficients:
Ak) = XM(*,R) /N | 0SK<N.

Here, the number of operations is bounded by N(y;fl;.*...frn) . Therefore, we will
callix'(jfl’k)fFFT table of function )((t) , which plays an essential role in the reduction
of the number of operations.

Now, we assume that the input data are all real. Then, we have following relations
in the FFT table. The element of FFT table xt(jfd‘»k) is real for any J when K is 0.

Otherwise there hold relations

KE(jrd, Ne-k) = X2 (jta, &) WNGH) , 0<j<A, 0<k<N | (g

This can be proved from the definition of FFT table and the periodicity of the

trigonometric functions.

Next, we consider symmetry of FFT table. For Hermite symmetrical data



X(N-j-a)= X (jtd) ,

we have similar property such that

0Sj<N,

K(f-j-a, k)= X*(jtd, %) , 0<j<N, , 0S K< M, 8)
For skew Hermite symmetrical data
X(N-j~d) == X(jta), 0<j<H,
we find such a skew symmetry as
K(Herj-4,8) = - X414, K) 03 <o, 02k<N .
In formulas (8) and (9), o must be 0 or -%‘- + because both j+& and N, - j-d
are to be included in the set {j-}d' oéj <N l]

3. Algorithms

For convenience, we describe algorithms based on the midpoint rule, only in the

case where AN 1is a power of 2.

(a) Complex data

X"t ,0) = X+ k),

X(jrd, &) = K Grd, ) + KGRy, &)

X Grd ko) =~W(i+{)“{x‘*(;f§,&)- X GeRad, %) §
0Lj<N, |, 0S K< Moy , L= 1,2,

l“ ’
Bik) = X"tL. k) /N, 0 k<N.

Here, the number of operations is N ,03 N

(b) Real and Hermite symmetrical data

Xjtd,0) = | x(rE) e x(L-j-Dite P xt +jr) e x(4--DY

X *L,z)wqfi-)‘={xt,'f{)fx(l— ~Dt-{x e+ xE-i-b,
X' Gran) = Wirh) Ixgrdy - x (-5 - hewth(xF1je 0 - x(§-5-1§
X((if‘% 2’ ”[ﬁ) w‘j*li)”l—' =

X“(ed ,0) - X7 (Aimj-1,0),
x‘(j+l,.4<) = x"(j+1,

K)+ X (Ne-j-1, %),
XGes My k) = Wit )“'{x"(,+- K)- X*'(F-j-L, 20,
X Gt Mo ) = W(,'*-}.)”“‘{x"'ljrl sy )W (Gt L)

- oy, ~ . by 2IRY ”z-
'W(%)x“(”»’j"!:v N;—z)w‘”“)_{) ls )
, 0<2k< Moy, X234, , M1

Blo) = 2x™({,0)/n , BUE)- V‘x""(z,,)w(-%)/ﬂ B({)=0,
Blk) = 2 Re x""(—,{.*)//v,

B(A-x)=-2Ta "Ly %) /¥,

0< <A,

L
R &4 4 -
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This algorithm may be called the fast Fourier cosine transform of the even
function X(f) , whose number of operations is equal to %(h}xN- 2).

The similar algorithm of the fast Fourier sine transform, shown in our Japanese

version, is omitted in this paper.

4. Approximation and integration

We construct a sequence of interpolating polynomials of X(t) with increasing order
of power of 2. This algorithm can be formulated into an iteration of the dicrete
Fourier transform based on the midpoint rule under some initial conditions. The re-
sulting polynomial is a discrete Fourier series of x(t) based on the trapezoidal rule
whose degree of approximation essentially depends on the differential property of the
given function X(t) . Assume that )((t) is an analytic and periodic function on (-'0,'9).

Noting that discrete Fourier coefficient has relation C_‘=C.-‘ for any X , we

approximate X(t) by the polynomial

< . 2% st (10)
plz) = k2T, =2,
X -N/a v
where N is an even number and the notation Z means that the first and last
summands are to be halved.

We obtain the error bound

it
| xt)-pe) < layltliaw,|l+2Z y frad+iaayg
k)YN/2
from the discrete orthogonality of the trigonometric functions. By this inequality,

we have a practical error bound
Z{IC,JA-A"‘ ‘CN/.N l + 'Ii | CN/L' } .
Now, we show an algorithm of the fast and generalized Clenshaw-Curtis integration.

When N is 2" , we rewrite B« and C« by B: and C: , respectively. Then

we have

)
1}

l° _ll_{x(o)-r XUC)‘ ,

L= k) -xwy
PEEADSEAE
L34

C«,,,«=-’;{C‘;—B';‘],

os k< 2"

a0~
]

R nel,2, "

This is a recurrence formula for the discrete Fourier coefficients c';', based on
the trapezoidal rule. In this iterative method, the previous computed values of

" i i
function for discrete Fourier coefficients B"; based on the midpoint rule are not
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wasted. We increase N with the power of 2, until stopping criterion
L] L J'
2{ I C”/‘-, “" ‘cﬂ/.,?ll t 2 lCN/;l (, <t y
is satisfied for a tolerance T .
The number of operations to obtain all the coefficients ic:&for complex input

data is counted by

o i 1 N .. . N "
2 22" =7 (AguN=-2) , N=27,

=2
which can be halved for real data.

In the case of fast Fourier sine or cosine transform, the number of operations
is reduced to A;—(‘o‘}.“—f)-

As mentioned above, we get an interpolating polynomial

7 1 = =ikt ikt
xW= 2 ety
os K< N,
for real valued function )((t) with preassigned accuracy.

By the integration of the series term by term, we have, evidently

t

- N ikt .

I. Xi)dt = Cot t 2 2‘_‘ W% Iaic, e f+ % Cuy Awn -’%t . (11
(24,29

If X{t)is an even function, all th’é coefficients (,:‘ are real. So we obtain a

simple formula:

t
s Xt = ¢t +2 > ii‘ vkt (12)
o o< KSHN/p
Integration of periodic functions will be extended to wider class of
functions by a variable transformation. Some examples are shown in our Japanese

version.

References

1) J.W.Cooley and J.W.Tukey: An Algorithm for the Machine Calculation of Complex
Fourier Series, Math. Comp.,vol.19, pp.297-301(1965).

2) T.Torii: On the Fast Fourier Transform Using the Symmetry of Input Data,
Journal of Information Processing of Japan, vol.l5,pp.516-523(1974).

3) C.W.Clenshaw and A.R.Curtis: A Method for Numerical Integration on an Automatic

computer, Numer. Math., vol.2, pp.197-205(1960).



