31

An Algorithm for Generating All the Directed
Paths and Its Application

Tran DINH Am*, Shuji TSUKIYAMA*, Isao SHIRAKAWA®*
and Hiroshi OZAKI*

Abstract

a S I TAC T B S GO S T SN st a e A
aAn 1 Lo generaile aili un dlrecteda patns irom rex to an-

=
o
[
oQ
[«]
]
%3
ot

other one in a given graph is proposed. The algorithm requires the processing time

bounded by the order O((n+m)(p+l)) and memory space bounded by O(n+m), where n, m, and
p denote the numbers of vertices, edges, and directed paths in a given graph, respec~
tively. As an application of the algorithm, the shortest or longest path problem in a

directed graph containing cycles of negative weight is also considered.

1. Introduction

The problem of finding the shortest path between two specified vertices in a
graph has been investigated by a great number of authors (see, for example, [1]).
However, any such approach may not be directly applied to an undirected graph with an
edge of negative weight or a directed graph (or digraph) with a cycle of negative
weightlz]. Generally, to solve this problem for a given digraph containing cycles of
negative weight, an algorithm to generate all the directed paths (or dipaths) between
two specified vertices might have to be employed in the worst case.

On the other hand, in the computer-aided analysis for a system of graphical
structure, the problems of listing all the subsystems satisfying certain particular
properties are often confronted. Among these, the problem of listing all the dipaths
between two specified vertices is very important in the application of digraph theory,
for example, to the reliabilty analysis of a communication network[3].

The approaches so far proposed for generating all the paths may be classified

[4]-(6]

into two: The first is based on the matrix manipulation , the second is on the

(71,181

search techniques

Henceforth, we propose an algorithm with the use of the marking techniques intro-

191

duced by Johnson The processing time of the procedure is bounded by O(n+m) per

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 16, No.9 (1975), pp. 774~T780.
* Department of Electronic Engineering, Faculty of Engineering, University of Osaka

32

dipath, where n and m are the numbers of vertices and edges of a given digraph. More-
over, as an application of the procedure,we also discuss an approach to the shortest
dipath problem (or longest dipath problem) for such a digraph as contains cycles of

negative weight.

2, Algorithm

real number w(e) is assigned to each edge e as its weight. Henceforth, for each edge

e let s(e) and t(e) represent‘the initial and terminal vertices of e, respectively,

and e denote by an ordered pair e= (s(e),t(e)), for which e is said to be incident
from s(e) into t(e). Moreover, we assume that graph G does not contain any edge e
with s(e) = tge), and that for any two distinct vertices v and w, G contains at most
one edge incident from v into w.

A dipath R of length k from Yo to Vi is an ordered sequence of edges [(v, ,vl),

(vl,vz),---,(vk_l,vk)] with vil‘vj (0<1i<j<k), and its distance is the total sum of
edge weights of R. Especially when Vo = Vi R is called a cycle of length k.

The algorithm to find all the dipaths from a specified vertex s to another t in a

[8]

graph G has been considered by Read and Tarjan with the use of the depth~first

search technique. However, in the proposing algorithm, the searches can be made more

fruitful by assigning to every vertex the so-called "blocked" or "unblocked" state, as

employed by Johnsonlg].

The algorithm for generating all the dipaths from a start vertex s to a target
vertex t is shown in Fig. 1 in ALGOL-1like notations, where we assume that the struc-
ture of a given graph is represented by the specification of E(v) A { el s(e) =v } for

each vertex v and a pair of s(e) and t(e) for each edge e.

procedure DIPATH GENERATION ; comment t is the target and s is the start vertex ;
begin 1list array E(n), B(n) ; array T(m), w(m) ; logical array blocked(n) ;
procedure BACKTRACK (most recently reached vertex v, logical result f) ;

begin logical g ;
procedure UNBLOCK (blocked vertex u) ;

begin
blocked(u) := false ;
for yeB(u) do begin
delete y from B(u) ;
if blocked(y) =true then UNBLOCK(y)
end
end TUNBLOCK ;
f := false ;
blocked(v) := true ;
for eeE(v) do begin

33

y := T(e) ; comment edge e is incident into y ;
put e on stack PS ;
d :=d + w(e) ;
if y=t then Dbegin
output of dipath containing in stack PS ;
output the distance d of the dipath from s to t ;

f := true

else 1if Dblocked(y) = false then begin
BACKTRACK(y, g) 3
if g=true then f := true

if f=true then UNBLOCK(v)
else for ec¢E(v) do begin
y := T(e) ;
if v¢éB(y) then put v on B(y)

end
end BACKTRACK ;
empty stack PS ;
d :=0 ;
for each vertex u of G do begin
blocked(u) := false ;
B(u) := ¢
end ;
BACKTRACK(s, flag)
end DIPATH GENERATION

Fig. 1. An algorithm for generating all the dipaths from s to t.

[Theorem 1] The application of the procedure DIPATH GENERATION yields all the di-
paths from s to t without duplication.

[Theorem 2] The procedure DIPATH GENERATION requires memory space bounded by O(min)
and processing time bounded by O((m+n)(p+l)), where n, m, and p denote the numbers of

vertices, edges, and dipaths in a given digraph, respectively.

3. Application to the shortest or longest dipath problem

As an application of the algorithm stated above, we consider in the following an
approach to the problem of finding the shortest (or longest) dipath.

If graph 8 is derived from a given graph G by multiplying every edge weight of G
by -1, then the problem of finding the longest dipath from s to t in graph G can be
reduced to that of finding the shortest dipath from s to t in graph E, hence we dis-
cuss only the former problem.

(1]

Although many efficient procedures have been proposed for this problem , they
may not be directly applied to a graph permitted the existence of negative cycles.
Thus, the proposed algorithm can be considered as an approach to this problem without

any such restriction.

34

However, if we employ such a dipath generation algorithm as a method for the
shortest dipath problem, then another aspect of the problem is to be taken into con-
sideration to improve the efficiency.

For two distinct vertices p and q, denote by j:Z(p,q) a set of all the dipaths
from p to q, and by V(R) a set of vertices of dipath R, and then let

V(R @) 4 refoipra) V-

If for any vertex x, there holds

V(R (s, V(R x,0) = ixl,
or if for any edge e = (v,w), there holds
V(R (s.v)) V(R w0 = o,

then let vertex x or edge e be said to satisfy the splitting condition, respectively.

In applying the proposed algorithm to the shortest path problem, it should be
noticed that for any vertex x or edge e= (v,w) satisfying this splitting condition,
once an edge incident into x or edge e is explored, the shortest dipath from x or from
w to t can be determined. Thus, if any edge incident into x or edge e is explored
again, then the edges incident from x or the edges incident from w are no more neces-
sary to be explored. Hence we can see from this observation that the algorithm has
some room to be modified so as to be applied to this problem with more efficiency.

Although unfortunately any efficient method to seek all such vertices or edges
has not ever been known, a more restricted class of those vertices called dominators
or those edges not contained in any strongly connected component, which satisfy the
splitting condition, can be sought in processing time bounded by O(mtnlog n)[lol or

O(m+n)[11]

» respectively, and hence we can see that considerable improvements on the
algotithm may be attained. For example, suppose that every dipath from s to t passes
a vertex x, and let P, denote the number of dipaths from s to x and P, the number of
dipaths from x to t. Then the processing time of 0((m+n)(p1p2+1)) for finding the
shortest dipath can be reduced to 0((m+n)(pl+P2)+m+nlogn).

Furthermore noting that in any acyclic graph (graph without any cycle) every ver-
tex satisfies the splitting condition, the proposed algorithm can be modified into an

O(mtn) algorithm for the shortest dipath problem for acyclic graph, which is of great

use in the PART problem.

4. Conclusions

This paper proposes an efficient procedure to list up all the dipaths from a

35
specified vertex s to another t in a given graph. Moreover, as an application of this
algorithm to the shortest dipath problem, a guideline to reduce the processing time

due to some structural consideration on a given graph is observed.

REFERENCES

[1] S.E.Dreyfus, "An appraisal of some shortest path algorithm”, Opns. Res., vol. 17,
no. 3, pp. 395-412, 1969.

[2] S.Goto and T.Ohtsuki, "The simplex algorithm on a linear graph -~ A unified view

of the extremal path and cutset problems on a graph", IECE of Japan Trans. A,

vol. 57, no. 11, pp. 810-817, 1974 (in Japanese).
[3] L.Fratta and U.G.Montanari, "A boolean algebra method for computing the terminal

reliability in a communication network'", IEEE Trans. Circuit Theory, vol. CT-20,

no. 3, pp. 203-211, 1973.

[4] G.H.Danielson, "On finding the simple paths and circuits in a graph", IEEE Tranms.
Circuit Theory, vol. CT-15, no. 3, pp. 294-295, 1968.

[5] K.Aihara, "An algebraic approach to finding elementary path sets using
sparse matrix technique'", Mono. IECE of Japan, CST 73-40, Sept. 1973 (in Jap-~
anese).

[6] L.Fratta and U.Montanari, "All simple paths in a graph by solving a system of
linear equations", IEI. Pisa, Italy, Tech., Note B, Nov. 1971.

[7] P.M.Lin and G.E.Alderson, 'Symbolic network functions by a single path finding
algorithm", Proc. 7th Allerton Conference on Circuit and System Theory, pp.196-
205, 1969.

[8] R.C.Read and R.E.Tarjan, "Bounds on backtrack algorithms for listing cycles,
paths, and spanning trees", Networks, vol. 5, no. 3, pp. 237-252, 1975.

[9] D.B.Johnson, "Finding all the elementary circuits of a directed graph", SIAM J.
Comput., vol. 4, no. 1, pp. 77-84, 1975.

(10] R.Tarjan, "Finding dominators in directed graphs', SIAM J. Comput., vol. 3,
no. 1, pp. 62-69, 1974.

[11] R.Tarjan, "Depth-first search and linear graph algorithms", SIAM J. Comput.,

vol. 1, no. 2, pp. 146-160, 1972.

