Information Processing in Japan VoL17,1977

Generating and Sorting Permutations Using
Restricted-Deques

Atsumi IMAMIYA* and Akihiro NOZAKI*

Abstract
This paper is concerned with the problem of generating and sorting permutafions
using restricted-deques. Characterizations of permutations, that are genetable and
sortable using a restricted-deque, are given and also two sorting algorithms, using
networks of output restricted-deques, are presented. The number of output restricted
-deques is also given in a cascade network which can sort any permutations by the al-

gorithm.
1. INTRODUCTION

For a given class of devices or equipments for information processing, their abil-
ity has been studied by many researchers, e.g., the correspondences between a switching
gate and Boolean functions, and between an automaton and formal languages.

A memory may be regarded as an information processing device with input, output,
and storaga facilities, but with no explicit functional capability unlike switching
gates or automata. The output from the memory may be regarded as the permutations which
are multiset([2] on the input. Therefore, it is interesting to study what permutations
can be generated by a given class of memory.

On the other hand, linear lists are frequently used in the study of computer algo-
rithms[1,2,5). Knuth[l] has shown the capability of the stack to generate permutations
and the correspondence between the permutations and Young Tableau(2].

Inspired by Knuth's work, Even and Itai[3] have shown how to generate the permuta-

tions in the network of queues or stacks, and the correspondence between the permutations

and graphs. Sorting, using the networks of queues or stacks, has been given by Tarjanl[4].

In this paper we wish to consider the problems of generating and sorting permutat-

ions using restricted-deques.

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol.17, No. 12 (1976), pp. 1128~1134.

* Department of Computer Science, Yamanashi University

80

81
A deque(double-ended queue) is a linear list for which all loadings and unloadings

(and usually all access) are made at the ends of the list. A deque is, therefore, more

general than a stack(all loadings and unloadings are made at one end of the list) or a

queue (all loadings are made at one end of the list, all unloadings are made at the

other end). We also distinguish the output restricted-deque(ORDQ) or input restricted-
deque (IRDQ). ORDQ and IRDQ are generally called RDQ(see the definitions in Section 2).
In this paper we wish to consider the following problems by using RDQ('s):

(a) Generating permutations; suppose there are symbols 1, 2,-*+, n in a source queue,
in their natural order. We want to rearrange 1, 2,°*--, n
by moving symbols through an RDQ or the network of RDQs,
and by putting them from the system of RDQ into a sink
queue. After a suitable number of such moves, the permu~
tation of 1, 2,**, n will be in a sink queue(l,3].

(b) Sorting permutations; suppose there is a permutation p(l)p(2)-+--p(n) in a sour-
ce queue. We want to arrange the permutation by moving
symbols through an RDQ or the network of RDQs, and by
putting them from the system into a sink queue. If they
are in order, smallest to largest, the permutation has

been sorted by the system(2].

2. GENERATING AND SORTING PERMUTATIONS USING AN RDQ

In this section, the RDQ's capabilities of generating and sorting permutations
are shown.
[DEFINITION] An output restricted-deque (ORDQ) or an input restricted-deque (IRDQ),

is one in which unloadings or loadings, respectively, are allowed to take place at

only one end(1]. a X

s s X
ORDQ and IRDQ are also called \ /' N ﬂ

RDQ. Let S, X, and Q denote respect-

ively, the operations of loading an

element at one end, unloading an el-
° o A Ny

ement from the same end, and loading (a) (b)

at the other end of an ORDQ.
Fig. 1 Restricted Deque
Let S, X, and Y denote respecti- (a) Output~Restricted Deque (ORDQ),
. (b) Input-Restricted Degue (IFDQ) .
vely, the operations of loading an

82
element at one end, unloading an element from the same end, and unloading at the other
end of an IRDQ(see Fig. 1).

Let assume that the RDQ gets stuck if at some time a symbol p is not accessible
in the some state of loaded symbols, The symbols unloaded from the RDQ must not be
loaded in it once again.

Each RDQ's capability of generating permutations is shown in Theorem 1 and Theo-
rem 2.

[THEOREM 1] It is possible to generate the permutation P = plp2---pn from 12...n

using an ORDQ if and only if it contains no subsequence P;i1P;oP;3Pi4 such that
{r1) Pj1 > Pi3 > Pig > Pyy

or/and
(T2) Py > Pi3 7 Py > Py,

for all il, i2, i3, and i4, where 1 § i1 < i2 i3 < i4 ¢ n .

Proof.
ONLY IF : Suppose that an output permutation P = plpz---pn contains a subsequence
pilpi29i3pi4 with the stated order (T1l). We must keep piz, pi3, and pi4 on the ORDQ

until pil was put on and then unloaded from the ORDQ by the condition (T1l). We also
must keep these four symbols in the state shown in Fig.2(a) for generating the permu-

tation P.
First, symbol P, must be loaded by an operation S or Q within the four symbols,
because pi2 precedes the others in the input. Next, symbol P4 must be loaded by an

operation Q, because the output order is | R , and then pi4(see Fig.2(b)).

12’ Pi3
Then the symbol pi

must be inserted between pi and pi4 because of the subsequece

3 2

Pi1P;oPs3Pia" But we find that it is impossible from the state shown in Fig.2(b).

IF : Suppose at some point the ORDQ p: *
i ’
gets stuck, because of the state loaded on it. :1 .
o Py P
If the ORDQ gets stuck, it will not generate L2 12
. .
L]
the permutation P = p_p_---p , and vice versa. Py
172 n . 3 pi
N 4
Therefore, if we can obtain properties making Pl‘ :
[} '
the ORDQ get stuck, it must be a sufficient "
condition for this theorem that the permuta-
(a) (b)

tion to be generated does not satisfy these
properties. Fig. 2 Aspect of Symbols Loaded in ORDQ

83

The desired permutation can be generated by using the following algorithm;

"Assume that at some point PP, Py has been unloaded. Zero or more input symbols
must be loaded(as many as necessary) until P is at the top of the ORDQ as follows.
Let the symbol u be at the top of the ORDQ at the time the symbol i is loaded on it.
If symbol i precedes u in the permutation P, symbol i must be loaded by an operation
S. Otherwise, it must be loaded by an operation Q. If the symbol pk+lis at the top of
the ORDQ, then unload | This process continue until all of the symbols have been
unloaded, or until the ORDQ gets stuck."

If the algorithm can fail, what conditions does the permutation P has? Suppose
at some point the ORDQ gets stuck and the symbol a, which must be unloaded next, is
inaccessible below the top of the ORDQ. That is, at least one symbol b exists above a
in the ORDQ, and symbol a precedes symbol b in the output permutation P. We must ob-
tain the conditions for such a symbol b:

(1.1) aP b; The top symbol u (a» u, u k% b@) precedes symbol a in the output
permutation P at the time symbol a is loaded. Therefore, the symbol a must be loaded
on the ORDQ by an operation Q. The ORDQ does not get stuck at the time symbol a is un-
loaded unless all a, b, and u stay on the ORDQ until symbol c is loaded on by an oper-
ation S and unloaded. The symbol c satisfies the following inequalities; c » a, b, u.
Let pil =c, pi2 = u, pi3 = a, and pi4 = b. In this case, the permutation contains
the subsequence Pilpizpi3pi4 such that
(T} Pj;7 Pi3 > Pig?7 Pyy -
or
(T2) Pi1 P Pi3 7 Pip PPy v for 1€ i1 <€ i2 i3 <i4 < n .
(1.2) a ¢ b; Suppose that there exists symbol v at the top of the ORDQ at the time
symbol b is loaded, where b » v, and v X a @@. By the hypothesis, if symbol b does not
precede v in the permutation P, the algorithm can not load symbol b above symbol a.
Similarly for (1.1), if there exists symbol c above a, b, and v, they can stay toge-
ther on the ORDQ at this time. A symbol c satisfies the following inequalities;

c»a, b, v. Let pil = c, Pi2 = a, pi3 = b, and pi4 =v.

@ If not so, because the algorithm can load the symbol a by an operation S, it is
contrary to the assumption that the symbol b is above the symbol a in the ORDQ.

@@ 1If no so, it is contrary to the assumption that the ORDQ gets stuck at the time
the symbol a is unloaded.

84

In this case, the permutation contains the subsequence pilpizpi3pi4 such that

(T1) P;1? Py3 7 Pig 2 Py v

or

(T2) P17 Pi37Pi3 7Pig, for 1 <il < i2 < i3 < i4 & n. n

We can have the following similar theorem for an IRDQ.
[THEOREM 2] It is possible to generate the permutation P = plpz"‘pn from 12:-:n

using an IRDQ if and only if it contains no subsequence pilp such that

12P13Pia
(T2) Pi17 Pi3? P37 Piy v

or/and
(T3) Pi17 Pijg > Py >Pi5 0

for all il, i2, i3, and i4, where 1 £ il €i2 € i3 < i4 £ n. []

Each RDQ's capability of sorting permutations is shown in Theorem 3.
[THEOREM 3] A permutation P = qlqz---qn is sortable by using an ORDQ(an IRDQ) if and
only if the permutation contains no subsequence qilqi2q13q14 that satisfies(Sl) or/and
(S2) ((S2) or/and (S3)) such that
S 9352 9432 % > Yq
520 q4;2 43 2%, 2%,
(63) 9335 941 > % P g

for all il, i2, i3, and i4, where 1 € il € i2 €i3 < i4 < n. .
3. SORTING ALGORITHMs USING NETWORKs OF ORDQs

In this section we shall give two sorting algorithms which use the parallel net-
work and the cascade network of ORDQs.

3.1. Sorting Using Parallel Network of ORDQs

We give the sorting algorithm for any permutation P = plpz--.pn stored in a source

QI into a sink Qo through ORDQs in a parallel network of ORDQs shown in Fig.3(a).
D[1)
D[0) Dp[1] D[2) D[2p] D[2p+1)
(b)

(a) ORDQ Parallel Net
(b) ORDQ Cascade Net
Dim) Fig.3 Sorting Networks

85
Let Cl[i,q,.] be a set of the ordered sequences q..q..q.. as follows;
i4 11212713
C[j,q“] = { qilqizqi3 \ subsequence qilqizqi3qi4 satisfies the condition (Sj) in
Theorem 3, where j= 1, 2!.

Let C[j]

éiidj'q“]' and C = C[1] y cl2].

ALGORITHM PS : Given a set C = {51,52, ""Et)’Of a permutation 99,- -9 where

c for 1 €k €<t. If a symbol a is in D[i], it denotes that a € D[i].

x - 41%2%3
Let i be the number of the ORDQs and j be the number of input symbols at the stage.

PS 1 : Set j¢«— 1.
PS 2 : Set ie— 1.

PS 3 : [Check the set C] If Ek exists in C such that Ek

= abqj for Ya,b € DIil,
set i ¢— i+l and continue step PS 3; otherwise go to step PS 4.

PS 4 : [Load the symbol qj into D({i]] Set D[i] @ D[i] @® qj @@@, i.e., load qj into

Dfi].

PS 5 : [Next symbol] Set j «—— j+l, and if j € n, go to step PS 2; otherwise termin-
ate the loadings, then unload all symbols from the smallest to the largest by compar-—
ing the top symbols of each ORDQ. If all ORDQs are empty, the algorithm terminates. |

{EXAMPLE 1] Sort the permutation 2746531 by using ALGORITHM PS. The set C is given
as follows ; C = {274,276,275,273,243,265,263,253,465,746 } . The aspect of loadings

is shown in Fig.4. n
1
2
EES———
TR
1356472 [g 7654321
]]

3
5

Fig.4 Sorting 2746531 Using ORDQ Parallel Net
3.2. Sorting Using Cascade Network of ORDQs
We shall now give a sorting algorithm for a cascade network of ORDQs as shown in

Fig.3(b). We shall also give the number of ORDQs for the sorting.

Suppose that all n elements of the given permutation are loaded before unloading

begins at any ORDQ.
@@@ The content of D[i] is an ordered set of qj's. @® means that when qj is going to

be loaded, for the top symbol u in D[i] if u <qj then qjshould be loaded into
D[i] by the operation Q; otherwise qj should be loaded into D{i] by the operation S.

86

ALGORITHM CS : In Fig.3(b), D[k] can be a queue for k = 0, 2{19-ﬁ1 +1. Each symbol

p(i) of the permutation P = p(l)p(2)---p(n) is denoted in binary form, bpbp_]_:ﬁb2 1
r

as follows : p(i) = by 2Pty By 2224 ... + b2+ b, where p = [1g nlana

b, =0, 1

CS 1 : Set k «—— 0(k is the number of ORDQs), and set j «— 0(0 £ j < p).
CS 2 : [Loading] Set k «— k+1, and set j €— j+1. The following operations should
be done for increasing order of i(i =1, 2, ***, n);

"If bj= 0, load p(i) into D[k] by the operation S; otherwise load p(i) into DI[k]
by the operation Q."
CS 3 : [Unloading and next loading] Set k €—— k+1. If j < p, the following operations
should be done for increasing order of i:

"Unload p(i) from D[k-1] and then if bj= 0, load p(i) into D[k] by the operation
S; otherwise load p(i) into D[k] by the operation Q."

Then go to step CS 2. If j » p, go to step CS 4.

CS 4 : [Terminating]l k = [1lg n] , all symbols can be loaded from D[2p] to D[2p+l] by

the operation Q. Then the algorithm terminates. n
[EXAMPLE 2] Sort the permutation 010 100 001 100 011 001
, 110 1102 1017 101 010 010
7465132 by using ALGORITHM CS. 100 010% 100 001 001 011
o 111 1112 1103 110 100 100
The aspect of loading in 101 101] 010° 010 101 101
. o 001 0017 1113 11 110 110
ORDQs is shown in Fig.5. 8 jon 011} 011, 011 m 11
The proof of Theorem 4 follows DI1] D[2) D{3) D[4) DIS) Dl6)

from algorithm CS. :
Fig.5 Sorting Net of ORDQs in cascade for 7465132

[{THEOREM 4] Algorithm CS can

sort any permutations of n elements by using cascade network of 2-rlg ﬁ‘ ORDQs. [

REFERENCES

[1] Knuth, D.E. Fundamental Algorithms, Addison Wesley, Ch.2, 2-nd Ed.,1973.

[2] Knuth, D.E. Sorting and Searching, Addison Wesley, Ch.5, 1973.

[3] Even, S. and Itai,A. Queues, Stacks, and Graphs, in Theory of Machines and Compu-
tations, Academic Press, pp.71-86, 1971.

[{4] Tarjan, R., Sorting Using Networks of Queues and Stacks, J.ACM, Vol.1l9

No.2, pp.341-346, 1972.

[S] Aho, A.V., Hopcroft, J.E. and Ullman, J.D. The Design and Analysis of Computer
Algorithms, Addison Wesley, 1974.

