Analysis of Parallel Hashing Algorithms
with Key Deletion
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Three parallel hashing schemes are presented together with the analysis of their efficiencies based on a sta-
tistical theory. As assessment parameters, probe numbers for parallel hash algorithms in these schemes such as
for pure search and for key insertion are calculated in the worst statistical equilibrium. The results show im-
provement of the efficiencies of parallel hash algorithms over those of conventional sequential hashing. When
parallel hash algorithms are implemented in hardware with multi-bank memory, they can be executed in a time

comparable to single indirect addressing.
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1. Introduction

In this paper, we describe an analysis of three parallel
hashing schemes which can handle key deletion without
key relocation. Our motivation, in developing these
schemes, is for hardware implementation of hashing
in view of accumulation and recent development of
many algorithms which rely heavily on hashing. These
algorithms include traditional application of hashing in
associative processing [1] as well as address mapping
[2] and symbolic and algebraic manipulation [3, 4, 5].
In the previous paper [6], we proposed a parallel hash
hardware which can handle key deletion with three
hashing schemes to be implemented on it. Performance
analysis of the three schemes based on a statistical
theory is treated in this paper; it serves for a preliminary
performance evaluation in a planned implementation
of the hardware proposed in [6].

The three parallel hashing schemes are based on the
parallelism of hash table accesses and on open addressing
for resolution of key collisions. The hash table is realized
by multi-bank (J banks, /> 1) memory, and the J keys
stored in different banks are read out simultaneously.
The schemes differ from each other in the generation of
hash addresses and in the way the read-out keys are
scanned in search for key match or emptiness. Analysis of
parallel hashing schemes without key deletion is made
in [7}. However, key deletion is indispensable for ad-
vanced applications, such as those mentioned above,
to be really viable.

In section 2, a problem of key deletion is discussed
and in section 3, the three schemes and associated al-
gorithms are presented. As an application of the analysis
technique presented here, algorithms *“Insert a key if
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it is not present in the hash table” in the three schemes
are described and the performance is analyzed in
section 5.

Although part of the material in sections 3 and 4
are covered in [6], they are rewritten here in a form
convenient for mathematical analysis.

2. Key deletion

Key deletion in the open addressing scheme is a
cumbersome problem for these reasons;

(i) A cell where a key is to be removed can not
simply be emptied since there may possibly be keys
that are in collision with the key.

(ii) When data structures subjected to hashing are
intricately referenced by pointers, efficient relocation
of keys would be very difficult.

A deletion algorithm by key relocation is described
in Knuth [8, Algorithm R]. It works only for the al-
gorithms of linear hashing, which is one of the slowest
hash algorithms described in Knuth, due to ‘clustering’
of keys.

A solution to this problem is to introduce collision
counters into the hash table. With collision counters,
we can determine whether a particular hash sequence
is terminating or not. This implies that the collision
counters serve two purposes; of preventing erroneous
termination of a hash probe sequence even if an empty
cell is encountered, and of decreasing the probe number
for an unsuccessful search. An obvious penalty for this
solution is extra storage requirement, i.e. M log, (MJ—J)
bits for Scheme 1 and MJlog, MJ bits for Schemes
2 and 3, as is later explained.

An alternative to this method is to allow only a
garbage collector (GBC) to perform key deletion: by
this garbage collector scheme, one-bit collision tags
may be used in place of collision counters since collision
counting can be done by GBC (The collision tag table
in this scheme is set up temporarily as opposed to ‘per-
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manently’ in the hardware counter scheme). GBC is
invoked when the load factor o (i.e. a=N/MJ where
N is the total number of keys in the hash table) of the
hash table exceeds the permissible maximum load
factor B. The garbage collection proceeds as follows:
first, all the collision tags of the emptry cells are reset;
then the hash probe sequence of each key is traced by
setting the collision tags of the empty cells probed.
If a still exceeds B after the garbage collection, the system
terminates the job immediately. If the GBC scheme is
not used, the system terminates the job when « exceeds

B.
3. The Parallel Hasing Schemes with Deletion

For each scheme below, three basic hashing algorithms
are discussed; ‘S’, search for a key; ‘D’, deletion of
a key that is known to be present in the hash table (we
call it an ‘existing key’ hereafter); and ‘I’, insertion of
a new key. Composite algorithms (such as “I*, insert
if search is unsuccessful” and “D*, delete if search is
successful’”) will be discussed in section §.

Fig. 1 shows, schematically, a data structure
representing the hash table. This data structure is
common to all the schemes.

3.1 Scheme 1

The same hash sequence A(k), i=1, 2, ... for a given
key k is used for all J banks. Thus, in one hash probing,
Klh(k), 1], K[hfk),2}),..., K[hy(k),J] are read out
simultaneously. Collision counters C[1: M] are used in
Scheme 1, where each element C[i] is common to a
row K[i, j},j=1,2,...,J. Note Scheme 1 is the same as
an open addressing hashing scheme using a bucket of size
J, except that all the cells of the bucket are accessed in
parallel, where a row K[i, j] j=1,2,...,J is identified
as a bucket i. We use in the subsequent analysis the
term ‘bucket’ in place of ‘a row of the hash table.’

Algorithm 1S: This algorithm searches for a given
key k and returns to R the address of the cell where
key k is stored. If the search is unsuccessful, the
value of R is the reserved word for emptiness ¢.

Hash Table Stored in a Multi-Bank Memory
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Fig. 1 Organization of a hash table for parallel hash schemes.
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(S1.1) [Initialization) Set i«1.
(S1.2) [Hash address generation] Set A+ h (k).
(S1.3) [Parallel hash table access]
Read K[h, 1], . . ., K[h, j] simultaneously.
(S1.4) [Check for match] If K[h, j]=k for some j
set Readdress of K[h,j], and terminate the
algorithm.
If C[h)>0, seti—i+ 1 and go to(S1.2); otherwise,
set R«¢ and terminate the algorithm.

Algorithm I1: This algorithm inserts a new key k
and returns to R the address of the cell where key
k is stored.

(I1.1) . . (I1.3) are the same as (S1.1)..(S1.3) of Al-
gorithm 18.

(I1.4) [Check for emptiness] If K[h, j]=¢ for some j,
set K[h, jl—k, R<address of K[h,j] and terminate
the algorithm.

Otherwise, set C[h}«C[h]+1 and i—i+1, and go
to (11.2).

Algorithm 1D: This algorithm deletes an existing key
in the hash table.

(D1.1)..(D1.3) are the same as (S1.1)..(S1.3) of
Algorithm 18.

(D1.4) [Check for match] If K[h,jl=k for some j,
set K[h, j]«¢ and terminate the algorithm.
Otherwise, set C[h]—C[h]—1 and i~i+1, and go
to (D1.2).

3.2 Scheme 2

J independent hash sequences A{’, i=1,2,... are
used one for each bank j, 1 <j<J. Thus, in one hash
probing K[A{/V(k), j1), K[A{'P(k), j2), . . ., KIAI2(k), j)]
are read out simultaneously; and this ordering is used
for inspection of the key, where (j, . . ., j;) is a permu-
tation of (l,...,J) chosen at random depending on
key k and index i.

In Algorithm 2I, 2S, 2D, 3I, 3S and 3D below, C
[1: M, 1:J] are collision counters associated with each
cell.

Algorithm 2S: This algorithm performs the same
function as Algorithm 1S.

(S2.1) [Initialization] Set i«1.

(S2.2) [Hash address generation] Set A[n]«h{"(k)
for n=1, ..., Jin parallel.

(S2.3) [Parallel hash table access] Read K[A[1], 1], ...,
K[h[J], J] simultaneously.

(S2.4) [Check for match] If K[A[j],j]=k for some j,
set Readdress of K[A[j],j], and terminate the
algorithm.

If ClALLL J1]>OA - . - ACIAL,), js1>0,
set i—i+1 and go to (S2.2); otherwise,
set R«¢ and terminate the algorithm.

Algorithm 2I: This algorithm performs the same
function as Algorithm 1I.

(I2.1) .. (12.3) are the same as (S2.1)..(S2.3) of Al-
gorithm 28S.
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(I2.4) [Check for emptiness]
For n=j,, ..., j, do, in this order;
if K[h[n), n]=¢, set K[h[n), nj—k, R«address of
K[A[n], n] and terminate the algorithm, otherwise,
set C[A[n}, n]«C[A[n], n]+ 1.
Set i—i+1 and go to (I12.2).

Algorithm 2D: This algorithm performs the same
function as Algorithm 1D.
(D2.1)..(D2.3) are the same as (S2.1)..(S2.3) of
Algorithm 2S
(D2.4) [Check for match]
For n=j,, ..., j; do, in this order;
if K[h[n}, n]=k, set K[h[n], n]—¢
and terminate the algorithm,
otherwise, set C[h[n], n]«C[h[n], n]—1.
Set i—i+1 and go to (D2.2).

3.3 Scheme 3

J independent hash sequences A{)(k), i=1,2, ... are
used for J banks as in Scheme 2. In one hash probing,
K[HY(K), 11, K[AP(k), 2), . . . , K[R{(K), J] are read out
simultaneously; and a fixed ordering is used for inser-
tion of the key. Therefore, Algorithm 3I, 3S and 3D are
the same as corresponding ones of Scheme 2 except
that the scanning order in steps (I12.4), (52.4) and (D2.4)
is replaced by one specified by j, =1, j,=2,..., j,=J
regardless of key k, and hash sequence index /.

4. Analysis of the Hashing Schemes

We shall assume in the following analysis (of Scheme
1, 2 and 3) that hash sequences are random and that
keys in the hash table are delected at random.

Among various probe numbers pertinent to a specific
application, the probe number for successful search,
PS, and the probe number for unsuccessful search,
PU, are important measures of the efficiency since other
probe numbers for composite algorithms (such as those
mentioned in section 3) are determined or bounded by
these two quantities. In this section, we shall calculate
PS and PU of the worst statistical equilibrium; that
is, deletions and insertions take place alternately keeping
the load factor o of the hash table very close to the
permissible maximum B. In mathematical terms, probe
numbers are functionals of loading history function
a(t), where ¢ (for time) is an integer which is incremented
by one each time either a deletion or an insertion takes
place. We conjecture that in random hashing

PS[a())< PS[Bl=PS, a(t)<pf<l (1.1)
PU[a(t)) < PU[B]l=PU (1.2)
PI*[o(2)] < PI*[f]=PI* (1.3)

The conjecture has been confirmed by simulations;
although in a simple case, the relation (1.1) in uniform
hashing is proved mathematically [9]. That is, PS[a(?)} <
PS[p'(¢)] where B'(t) is defined as follows: p'(t)=¢ for
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0<t<N, B(N+t)=N for even t>0 and f'(N+¢t)=
N+1 for odd t>0; and N denotes a sufficiently long
time period so that the statistical equilibrium is achieved.
Hence, we call the worst statistical equilibrium ‘the
worst cycle’ hereafter. Note that in the worst cycle,
PS is equal to PJ, i.e. a probe number for insertion.

4.1 Analysis of Scheme 1

Let B,, b; and p,, respectively, denote a state of a
bucket consisting of i occupied cells, the number of
buckets B; and the fraction of buckets B; i.e. p;=b,/M.
Under the assumption of the randomness, we can calcu-
late the distribution of B,’s in the worst cycle analyti-
cally. In the following derivations of equations, we
assume that M > 1 and regard « as a continuous variable
(continuum approximation to a discrete problem).
It is observed (and indeed proved for the probe number
without key deletion) that the continuum approxima-
tion gives pessimistic (larger) values of probe numbers
(than those of the exact discrete treatments).

When a new key is inserted in the hash table of load
factor a,

d* po/da=—poJ/(1-py) 14
d*p,jdu=(p;-—p)I(1-p) 15j<J (1.5
d*p,lde=p,_,J/(1-p;) (1.6)

and when a key is deleted,
d " polda=p,[a 1.7
dp;lda=((j+Dpjer—jpple 1<j<J  (1.8)
d " p,lda= —p,;Jla (1.9)

where we use the notation d* and d~ to distinguish
between the increment caused by insertion and that by
deletion.

Equation (1.4) is derived from the relationship; the
decrement of b, due to insertion of a key (i.e. —d*bo/
d(MJa)) is equal to the ratio of b, to the total number
of buckets having one or more empty cells (i.e. bo/
M(1—p,)). The increment of b; (1<j<J) is caused by
the insertion in buckets B;_,, and the decrement by
the insertion in buckets B;. Hence, eq. (1.5) follows.
Since no state transition of a bucket from B, in case of
the insertion is possible, eq. (1.6) follows.

In case of the deletion of a key, the decrement of
by (i.e. —d~b,/d(MJa)) is equal to the ratio of keys in
buckets B, (i.e. Jb,) to the total number of keys in the
hash table. Hence, eq. (1.9) follows. The increment of
b, (1<j<J) is caused by the deletion of a key that is
one of the (j+1)b;,, keys in buckets B;,,, and the
decrement by the deletion of a key that is one of the
Jjb; keys in buckets B;. Hence, eq. (1.8) follows. Equation
(1.7) is similarly derived.

For the statistical equilibrium in the worst cycle,

d*p,/du+d p;/da=0 ata=p andfor0<j<J.
J J
(1.10)
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Using the condition ¥/_, p;,=1 and the relations (1.10)
we obtain:

=¢'/(j! texp(J, q)) 0<j<J

J
p=in( L, 41G= Dt tespr.q)  (112)

where g=JB/(1—p;), and texp(J,q) is a truncated

exponential function defined by texp (J, ¢)=3Y7., ¢'/i!.
Given B, we can calculate p;’s. The value of P, thus

obtained is enough to obtain PS, which is given as:

PS=1/(1—-p,) (1.13)

Note term (1—p,), which is the probability of a bucket
having at least one empty cell, is equal to the probability
of a given key being probed in the worst cycle.

Probe number PU depends on collisions rather than
on the states B; of buckets, since an unsuccessful search
for key k terminates only if a hash probe sequence
ho(k), hy(k), ... terminates at a certain point h (k).
To determine PU numerically, we introduce a definition
of a further concept and some related notations.

(1.11)

A collision number of a bucket is a number of keys
in the hash table that have collided at the bucket.

Let B® (j=0,1,..., J and k=0,1,..., MJ-J)
denote a substate of a bucket in which the bucket
holds j empty cells and is with collision number k, and
let p{¥ be the probability of a bucket being in sub-
state B,

Obviously,

MJI-J

pi= Y pP.
k=0

(1.14)

For each k, change of p{"’s due to insertion of a new key
is given by:

d*pP/da=—pPJ/(1—p;) (1.15)

d*pPlda=(pP, —pIi(1-p;) 1<j<J (1.16)

d*pPlda=(p§2,+pF ™V —p{VJ(1-p) (1.17)
and due to deletion of a key is by:

PP lda=((j+ D —jp +(k+ )PSO —kpP)fa
0<j<J (1.18)
with the convention p$f) ;=0 and p§~V=0.

Equations (1.15) and (1.16) are obvious. In eq. (1.17),
term p, represents the effect of insertion of a key
into a bucket B{® ,; and the terms p$*~V and p{¥ repre-
sent the effects of collisions. Likewise, terms (k+1)
P+ Y and kp® in eq. (1.18) are introduced because of
collisions. Since in the worst cycle d*p{®/du+d ™ p®/da
=0 at a=f for 0<j<J, we obtain

9(p 1 —pP + 8 )+ G+ DR,
—jpP+k+1)pFV—kpP=0 0<j<J (1.19)
with the convention p%*), =0 and ¢g=JB/(1 —p,) as before.

Let QA=Y ¥ (j=0,1,2,...,J) be the
generating functions for these probability distributions.

T. IDA and E. Goro

Equations (1.19) are equivalent to
Q(Qj— 1)- Qj(l) - 5_,,/1Q_,(l)) +0U+ l)Qj+ (D)
—JjQ(A)—(A-1)dQy2)/di=0 (1.20)
Let z=g(A—1) and we have
Q(N=p;F(q; 2) (1.21)

and
Ffq:2= % /{7

where f{¥ =1, 0<;j<J because of condition (1.14).

Substituting eq. (1.21) into eq. (1.20), we obtain the
following recurrence relations for the coefficients f{
(n=0,1,...):

fP=@+nfPlq
af R =(q+j+nf P —if {2,
W=+ D) +n) (1.22)

Let y be the probability that a bucket being with
collision number k=0. Then

y= Z = Zop,F,(q; -q)

Since an unsuccessful search terminates only if a bucket
being probed is with zero collision number

PU=1/y. (1.29)

It would be difficult to find a closed form of Q1)
except for J=1. In this case, F, and F, are the solutions
of confluent hyper-geometric differential equations:

Fo(g; 2)=1Fi(g, 9 +2; 2) (1.25)

0<j<J

1<j<J-1

(1.23)

and
Fi(g;2)=,Fi(g+1,9+2;2)
where

i yi D= § TEHDTOETE i
(1.26)

This result for J=1 agrees with the result obtained in
[9] through a different approach based on the fact that
the sequence {p%®; k=0, 1,....} and {p¥;k=0,1....}
each form a Markov chain over the discrete time in-
stances.

4.2 Analysis of Schemes 2 and 3

We first consider Scheme 3 since Scheme 2 is the special
case of Scheme 3 (all a;’s are equal). Let a; be the load
factor of the j-th bank. Since increment of number of
keys in the first bank due to insertion of a key (i.e.

dMoa, [d(MJa)) is equal to (1 —a,)/(1—a, ... ay),
d*a,jda=J(1—a)/(1—a, ...ay) .1)

Similarly
drafda=Ja, ... .a; (1—a)/(1—0ay...a;), 2<j<J
2.2)
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As for deletion, we have:
d-olde= —a;le, 1<j<J 2.3)
In the worst cycle,

d*a;/du+d a;/de=0 ata=p, and for 15j<J.

2.4
Letting B;=a, for a=f we obtain the following; 9
uy=JB/(A-B,...B)
Bi=uj/(u;+1) 1<j<J
w=PB;_u;_, 2<j<J (2.5)
Similar to eq. (1.13), we have
PS=1/(1—B, ...B). (2.6)

Bi, ..., B; can be computed using the relation (2.5)
and the relation f=Y_, B,/J. To obtain PU, we must
find the fraction of cells in collision.

A collision number k of a cell is defined as it is defined
for the bucket and k ranges from 0 to MJ—1.

Let a{® be the probability, for each bank j, of a cell
being occupied with collision number k; and let 5
be the probability, for each bank j, of a cell being empty
with collision number k. Then, we have for j=1,2,...,
J:

d*aPlde;=(a¥ "V —aP +b{)/(1 —ay) 2.7
d* b0 day= —bP)(1 - at)) @.8)
d~aP/de=(—aPa)+((k+ Da** /o)~ (kaPla) (2.9)
d"bP/da=(@Pja)+((k+ Db Vjw)— (kdPJa)  (2.10)

The coefficient 1/(1—a;) in equations (2.7) and (2.8)
is the average number of probes to insert a new key in
bank j. The increment of the number of cells in bank j
with collision number k caused by the insertion is the
product of the average number of probes for insertion
and the total number of cells that may be turned into
the cells with collision count k by the insertion. Hence,
equations (2.7) and (2.8) follow.

Similarly, d~Ma{"/d(MJx) is the increment of the
number of cells with collision number k caused by
deletion of a key. Each term of the right hand side of
equation (2.9) is accounted for from the consideration:

(i) a?/(Ju;) is the probability of the cell, in bank
J» with collision number k being deleted.

(i) Term ka®/Ju is the contribution of the deletion
of keys that are in collisions of Ma® cells in bank j
(collision term). Let T be the total number of collisions
and N be the total number of occupied cells in the hash
table, then

T=Y Mk(aP +b{?) and N=3 Ma.
Jik Jik

Numbser of candidate keys is Mka{®. Since the decrement
of the collision number due to one key deletion is
(on the average) T/N, the number of collisions concerned
is (T/N)Mka(P. Therefore, ratio of this quantity to
T gives the desired contribution.
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(i) (k+1)a¥*Y/Ja is also a collision term and is
derived from the same consideration as (ii).
Equation (2.10) is similarly derived.

We now introduce generating functions for the
probability distributions a{"’s and b{""s,

ff)=Y a®2* and gH)= Y bPI* j=1,...,J
k=0 k=0
It can be shown that equations (2.7)~(2.10) under the
conditions
d*a®lde+d"aP/da=0 and d*bP/du+d bP|da=0
at a=p,

(i.e. in the worst cycle) reduce to confluent hyper-
geometric differential equations, whose solutions are
given by

SiD=8; Fi(1+s;,5;+2;5(1—1)) (2.11)
g/ =(1=B)) \Fi(s;, 5;+2; s{A—1)) (2.12)

where s;=JB-B, - B;_/(1—~B,- - B;) and | F, is defined
in (1.26). Since an unsuccessful search terminates when
at least one of the J cells that are simultaneously read
out is with zero collision number,

J
PU= 1/(1 -1 (1—a$°’—b‘i°’))
‘jl
—1/(1- [1a-f@-a ) @13

PU and PS in Scheme 2 can be obtained if we let =

By=PB,=""-=p,. instead of (2.5). Clearly, in Scheme 2
[iA)=£D="---=£f(D)=B Filg+1,9+2;9(1-1))
91N =g,V =---=g,A=(1-p),Fi(q, 9+2; 94— 1))

where ¢=g/(1—f).
S. Composite Algorithms and Their Probe Numbers

In this section, we give the algorithm for “Insert a
new key if search is unsuccessful” and its probe number
PI* in the three schemes. Note that this is the algorithm
to be used in the construction of associative tables.
A probe number PD* for D* discussed in section 3
is related to the relation PD* <2PS.

Algorithm 1I*: This algorithm inserts key k in the
hash table if key k is not stored in it, and Y is set
to true. Otherwise, Y is set to false. In either case,
R is set to the address of the cell where key & is
stored.

(I*1-1) [Initialization] Set i«1, del«false, ocu«false,
Y« true.

(I*1-2) [Hash address generation]

(I*1-3) [Parallel hash table access]
and (I1-3), respectively.

(I*1-4) [Check for match]

If K[h, j1=k for some j, set R«address of K[h, j]
and Y«false, otherwise go to (I*1-5).

Decrement the collision counters that have been
incremented by the application of this algorithm
using an algorithm similar to Algorithm 1D, and

}the same as (I1-2)
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terminate the algorithm.

(I*1-5) [Generate boolean conditions]
J

Set E« V (K[h, jl1=$)A\C[h]=0,

i=1

J
0w A (KTh /1 HACTH =0,
Cce /’\ (Kh, j1% $)ACIH>O,

J
13'-j=\/l (K[h, j1=H)ACH>0,

and jump to (I*1-6, I*1-7, I*1-8, I*1-9) according
to the boolean conditions that have been set in
this step.

(I*1-6) [In case E is true]
If del=true, set K[x, yl«k, R<address of K[x, y]
and terminate the algorithm.
Otherwise, set K[h, n]J«k where n is the index
such that K[h, n]=¢, set Re—address of K[h, n]
and terminate the algorithm.

(I*1-7) (In case D is true]
Let n be the index such that K[A, n]=¢.
If ocu=true, set K[h, nl—k, R+address of K[h, n]
and terminate the algorithm.
If del=true, set i—i+1 and go to (I*1-2).
Otherwise, set x«h, y—n, del—true, i—i+1 and
go to (I*1-2).

(I*1-8) [In case O is true]
If del=true, set K[x, y]k, R—address of K[x, y]
and terminate the algorithm.
Set ocu«true, Clhl«C[h]+1, i—i+1, and go to
(1*1-2).

(I*1-9) [In case C is true]
If del =false, set C[h)—C[h]+1
Set iei+1 and go to (I*1-2).

Algorithm 2I*: This algorithm performs the same
function as Algorithm 1I*.

(I*2-1) [Initialization] Set i« 1, del«—false, ocu«false,
Y true.

(I*2-2) [Hash address generation]

(I*2-3) [Parallel hash table access)
and (I12-3), respectively.

(I*2—4) [Check for match]
If K[hlj),j1=k for some j, set Readdress of K
[A[/j1,/]1 and Y+« false, otherwise go to (I*2-5).
Decrement the collision counters that have been
incremented by this algorithm using an algorithm
similar to Algorithm 2D, and terminate the al-
gorithm.

(I*2-5) [Generate boolean conditions]

Set C*—j/_\]l (KAL), j1# $ A CIRLI), 41> 0),

}the same as (I2-2)

J
O« js/\l (KAL), j1£ HNAC,
J

D A (CAL), /1> O A(K[A[n), =4

i=1
for some n),
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E~(0\JC\/D)
and jump to (I*2-6, I*2-7, [*2-8, 1*2-9) according
to the boolean condition that have been set in
this step.
(I*2-6) [In case E is true)
If del=true, set K[x, y]«k, R«address of K[x, y]
and terminate the algorithm.
Otherwise, for m=j,, . . ., j; do, in this order;
if K[h[m], m]=¢ then set K[hlm], ml<k, Re<
address of K[A[m], m] and terminate the algorithm,
otherwise set C[Ah[m], m)« C[h[m], m]+1.
(I*2-7) [In case D is true)
If ocu=true, for m=j,, ..., j; do, in this order;
if K[h[m), ml=¢ then set K[h[m], ml<k, R«
address of K{[h[m), m] and terminate the algorithm,
otherwise set C[A[m], m]«C[h{m], m]+1.
If del =true, set i—i+1 and go to (I1*2-2)
Otherwise, for m=j,,..., j, do, in this order;
if K[h[m], m}=¢ then set x<—h[m), y«—m, del«true,
i«~i+1, and go to (I*2—2)
(I*2-8) [In case O is true]
If del=true, set K[x, y]J—k, R«address of K[x, y]
and terminate the algorithm.
Set ocu«true, for j=j,, j,, . .
Clall, 1+ 1.
Set i«i+1, and go to (I*2-2).
(I*2-9) [In case C is true)
If del=false, for j=j,,j,,..
Cirljkj1+1.
Set i—i+1 and go to (1*2-2).
Algorithm 3I* is the same as Algorithm 2I* except
that j,, j,, ..., j, are fixed regardless of key k and i;
ie,ji=1,jo=2,...,j=J.
PI* of the three schemes can be determined by the
probabilities of O, E, C and D being set in step 5: That
is, when insertion is successful, I* is rephrased as;

. sj.l set C[”U]»i]‘-

'vj.l set C[h[’]’]]‘_

if O, apply Alogrithm I, else

if E, terminate the algorithm after inserting a key, else

if C, apply Algorithm I*, else (necessarily D)

perform an unsuccessful search and then insert a key.

Thus PI* = Pr[O)(1+ PI)+ PrE]+ Pr[C)(1 + PT*)+

Pr[DYPU+1) or PI* = (PrlO)PS+ Pr[DIPU+1)/

(Pr{O1+ PrlE]+ Pr[D))
where we use the notation Pr{x] which denotes the
probability of x being set, and the relation PI=PS.
Otherwise, when key duplication is detected PI*=2PS

Table 1 lists formulae giving Pr{O], Pr{E], Pr[C]
and Pr[D] at a given load factor § in the three schemes
without counting a memory access for actual key in-
sertion. We note PI*<PI+PU=PS+ PU since some
of the hash addresses generated in algorithms S and
I are shared in algorithm I*.

6. Results of Analysis

Figs. 2, 3, 4 and 5 show the graphs of PU and PS
with load factor f as a parameter.
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Table 1 Formulae of Pr{0O}, Pr{E), PriC] and Pr[D).

Scheme 1
PrE]= ji_:: PiFa; —9)
PrlO)=p,FAq; —q)

Pr{C)=p,F,(q; 0)—Pr{O}
Pr{D]=1—Pr{E]—Pr{O])—PriC]

Scheme 2
PriE}=1—Pr{0]—Pr{C]—Pr{D]
Prio)=p'—PriC]

PrACI=$'(1—Fi(g; —q)Y

Pr{D)=[1—Fy(q; —@)+B(Folq; —q)—Fi(q; —q))Y —PriC]
Scheme 3

Pr{E)=1—Pr{O)—Pr(C]—Pr{D}

Prio)= tlflx Bi—PrC)
PrACl= ‘r:II B:—£(0)
PADI= 11 (1~£(® ~(0)~PrC]

We observe the following relations for J<64 and
$<0.90.

PS,<PS,, PS,
PU,<PU,, PU,
PI%<PI%, PI*

(The subscripts denote Scheme numbers.)

Figures 2 and 3 show clearly the improvements of the
performance of the multi-bank schemes. (Although we
only show PU and PS in Scheme 3, similar improve-
ments are observed in Schemes 1 and 2.) Figures 4 and
S are comparisons of the three schemes at a fixed number
of banks J=4. PU’s increase rapidly as B approaches 1.
Figure 5 shows that PU, is slightly larger than PU,
and PU, for $<0.85. However, we find the following
relations for $=0.95 and J=2,4, ..., 64:

PU,>PU, > PU,.

maximum load factor 8

Fig. 2 Dependence of PS on number of banks J in Scheme 3.

PU

20

-

31

J=32

J=64

Fig. 3

PS

~

maximum load factor 8

Dependence of PU on number of banks J in Scheme 3.

PS

P
53

0.70 0.75 0.80 0.85 0.90 0.95
maximum load factor 8

Note: PS, is slightly larger than PS, although
indistinguishable in the figure.

Fig. 4 PS in the three schemes for number of banks J=4.

0.70 0.75 0.80 0.85 0.90 0.95

maximum load factor B

Fig. 5 PU in the three schemes for number of banks J=4.
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Fig. 6 Dependence of PI* on number of banks J in Scheme 3.

Fig. 6 shows the graph of PI* in Scheme 3. Since
the values of PU’s dominate those of PS’s in $>0.9,
graphs of PI* exhibit similar behavior to those of PU’s
as f asymptotically approaches 1.

7. Concluding Remarks

When parallelism is fully exploited, average probe
numbers are shown to be greatly reduced over the
conventional single-bank sequential hashing. In the
three schemes, parallelism of hash table access is ex-
ploited. Implicit in the calculation of PS, PU and PI*
is the assumption that hash address generation (n hash
addresses at one hash probing in Schemes 2 and 3) and
hash table access are performed in parallel. Therefore,
these probe numbers give the (worst) processing time
for the algorithms S, I and I* in the memory cycle time
unit. These values are cross-checked with those obtained
by simulations for small J and . Although Scheme 2
is the most complicated, our analysis revealed that its
performance is the poorest when the hash table gets
nearly full. Overall performance of Scheme 3 seems to
be best. The schemes are particularly suited for the
implementation of a hash hardware since the contem-
porary primary memory for a large scale computer
employs banking similar to the one for the hash table
proposed. In this regard, Scheme 1 requires less hard-
ware resource than Scheme 3 and, moreover, is easiest
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to implement. Choice of the schemes in the imple-
mentation is up to the system’s requirement (i.e.
speed and cost of a processor and memory).

A common aspect in hashing is the degradation of
efficiency when B approaches 1. From the results, it
is seen that larger permissible maximum load factor
B can be selected when J is taken large, say 64, than
that of conventional single bank hashing. One should
note that timing values obtained in the analysis are the
ones in the worst cases.

Randomness of hash sequences and of key deletions
is a subject for controversy in the real applications.
However, this is not the scope of this paper.

Basic hashing operations in these schemes can be
performed in a time comparable to single indirect ad-
dressing.

We found that calculation of the probe numbers for
large J and B require special treatment of the exponent
parts of floating numbers. We had to write a special
floating arithmetic package (jexponent|<23°). Suitable
automatic means of handling ‘big exponent’ [10] and
‘variable precision’ [10, 11] in future computer systems
are strongly urged.
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