Analysis of Memory Management Strategies for
Multiprogrammed Virtual Storage Systems

TAKASHI MASUDA*

Performance of multiprogrammed memory management strategies for virtual storage systems is extensively
investigated. Detailed simulation models are developed for this purpose. In particular, the working set strategy,
which is a representative variable partitioning strategy, is analyzed in the multiprogramming environment ap-
proximating the operating conditions of actual systems. Practical usage problems inherent to the strategy are
discussed. Investigated are the effect of window size, the performance of the on-demand paging policy compared
with that of the pre-loading policy, the effectiveness of controlling the maximum number of pages allocated
to a task, etc. In this analysis, the effect of locality set transfers in user programs is evaluated. The local LRU
strategy, which is a representative fixed partitioning strategy, is also analyzed for comparison with the working

set strategy.

1. Introduction

In virtual storage systems, memory management
strategies have a critical effect on system performance.
Programs tend to reference pages unequally and cluster
references to certain pages in short time intervals.
Therefore, they can be run efficiently in memory spaces
considerably smaller than the program size. These
properties depend on the tendency of program locality
references. It is known that excessive page faults occur
during program execution time when the locality set
is not loaded into the main memory. Consequently,
those memory management strategies are desirable that
estimate a program’s locality set at any time of execu-
tion and assign main memory pages to the program so
as to load the locality set. And the multiprogramming
degree should be decided on the basis of the locality
set sizes of active programs.

A number of memory management models have
been proposed and analyzed [3]. However, only a
few models and analyses have proved feasible for
practical use. This is partly because, as stated in [7],
the mathematical models do not usually formulate
actual systems and program paging behaviors in enough
detail to be of practical use. In addition, a few reports
([3], [6])) have analyzed memory management strategies
in a multiprogrammed environment; although many
reports have analyzed such strategies and program
paging behavior in a single program environment.

Memory management strategies can be grouped
with respect to the two basic strategies of partitioning
storage: fixed partitioning and variable partitioning.
In fixed partitioning strategies, a fixed number of page
frames is allocated to each active task; while in variable
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partitioning strategies, the number of allocated page
frames for each active task varies during program ex-
ecution. Coffman and Ryan [1] used the simple statistical
model of locality variations to compare these two storage
partitioning methods. They concluded that the total
memory size required for the variable partitioning
strategies is around 30 percent less than that required
by the fixed partitioning strategies for a given perform-
ance level when the variation in working set sizes is
relatively large.

In this paper, we compare performances of these
memory management strategies by using a simulation
technique and examine practical usage problems in-
herent to the strategies. A detailed simulation model
of the multiprogrammed memory management has
been developed for a time-sharing environment. The
effects of locality set transfer on total system perfor-
mance are also discussed.

2. Memory Management Strategies to be Analyzed

In order for a program to be executed efficiently,
that is, without excessive page fauits, the locality set
of the program must be loaded. It is not useful to assign
more memory spaces to a program than the locality
set size, and it causes excessive page faults to assign
less memory spaces to a program than the locality set
size. Even if the page replacement algorithm is adequate,
the system operates inefficiently when the memory
assignment policy is not adequate.

The locality reference properties of programs show
that variable partitioning strategies are generally superior
to fixed partitioning strategies because of the locality
set size variations. However, the locality properties
of each program are not known to the operating system
before program execution, and so the memory manage-
ment program must estimate the locality set of each
program from the past behavior of the program.
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The memory management strategies can be classified
as follows:

(1) Fixed partitioning strategy ~The main memory
is partitioned into the fixed number of areas, and each
active program is assigned a partitioned area.

(2) Variable partitioning strategy without explicit
correlation to the locality properties of active programs ~
Though the number of pages assigned to each active
program varies during program execution, they are
not explicitly correlated to the locality references of
active programs.

(3) Variable partitioning strategy with explicit cor-
relation to the locality properties of active programs~
The memory management strategy estimates the locality
set size of active programs, and main memory pages
are assigned dynamically during program execution
according to the locality set size of each active program.

There are a number of memory management strategies
which are classified into the above three kinds of strate-
gies. Some typical strategies which deserve considera-
tion are as follows:

(1) Local LRU strategy~This is a typical fixed
partitioning strategy. When a page fault occurs and a
page replacement is needed, the least recently used
selection is made from pages belonging to the task which
generated the page fault.

(2) Global LRU strategy ~ This is a typical variable
partitioning strategy with no explicit correlation to the
locality properties of active programs. When a page
replacement is needed, the replaced page is the one that
has not been referenced for the longest period of real
time, regardless of the task to which it belongs.

(3) Working set strategy~This is a variable parti-
tioning strategy which has explicit correlation to the
locality properties of active programs. The working
set W(t, T) at a given time ¢ is the set of distinct pages
referenced in the virtual time interval (1—T+1,¢t);
that is, the set of pages referenced during the last T
instructions where T is called the window size parameter.
The working set size w(f, T) is the number of pages in
W(t, T). The working set strategy uses the working set
as an estimator of a locality set and keeps in the main
memory those pages of active tasks which are included
in their working sets. The tasks are activated to the
maximum degree under the condition that their working
sets can be loaded into the main memory.

(4) PFF (Page Fault Frequency) strategy [6]~ This
is a modification of the working set strategy. Window
size varies for each active program according to the
page fault rate of the program in the PFF strategy,
while it is the same for all programs in the working set
strategy. In the PFF strategy, pages are allocated to
keep the paging rate constant for all active programs.

A representative fixed partitioning strategy and
variable partitioning strategy are selected for our simu-
lation analysis. As a fixed partitioning strategy, the
local LRU strategy is employed. The effect of memory
partitioning, which determines the multiprogramming

degree, is investigated.

The global LRU strategy and its modification have
been employed in many real systems. However, there
are two weak points in this strategy. The first is that
it is difficult to control the multiprogramming degree
adequately. Thrashing tends to occur when the sum of
locality set sizes of active programs exceeds the main
memory size. The second point is that the LRU property
of program behavior is assured only in a single program
environment. In the multiprogrammed environment,
the global LRU property of programs is affected by
the task scheduling policy. There is no guarantee that
the least recently used page will be reclaimed with the
least probability in the multiprogrammed environment.

In the working set strategy, the working set is used
as an estimate of a locality set, and those pages of active
tasks which have been referenced during the window
size T are resident in the main memory. Therefore, it
provides the capability to adapt to changes in the working
set and its size. Another distinguishing feature of the
working set strategy is that multiprogramming degree
control is inherent in the definition of the working set
strategy. The multiprogramming degree varies according
to the working set sizes of active programs. Program
activation and inactivation decisions must satisfy the
condition that locality set estimates of all active programs
are resident. Therefore, the probability of thrashing
can be kept low by selecting a suitable window size.

The PFF strategy is a variant to the working set
strategy. The page fault rate of each active task, instead
of window size, is used to control program activation
and inactivation decisions. Pages are allocated to active
tasks so as to keep the page fault rate of each active
task at a predetermined value. In the PFF strategy,
some active tasks with poor locality of references tend
to occupy more page frames than in the working set
strategy. For instance, when a task requests new data
pages at a certain rate greater than the predetermined
control value of the PFF strategy, the number of pages
allocated to the task increases monotonously. In the
working set strategy, the maximum number of page
frames allocated to an active task is limited by the
window size. The working set strategy will be preferable
to the PFF strategy, especially when quick response
is requested for tasks with good locality references,
as in the time-sharing system.

For these reasons, the working set strategy is em-
ployed as a representative variable partitioning strategy
in our simulation analysis. The variable partitioning
strategy is particularly useful in a batch system or in
a time-sharing system, where the page reference charac-
teristics vary greatly among jobs. In a time-sharing
system, in particular, the cpu time needed per interac-
tion is less than a few tens of milliseconds in most
interactions; and the dynamic program behavior changes
greatly in a short time. Thus, the capability of memory
allocation in units of one page and the dynamic control
of multiprogramming degree, which are the advantages



16

of virtual storage systems, can be used quite effectively.
Therefore, a time-sharing system is employed as an
environment of our simulation analysis. Most of the
results obtained, of course, are useful for the memory
managements of other kinds of systems.

3. Simulation Model

3.1 Task States and Transitions

Task states and transitions are shown in Fig. 1.
Since memory management strategies are to be analyzed,
only the terminals and paging devices are modeled as
peripheral devices. There are four states: running,
ready, pending and blocked. In the working set strategy,
another state, ‘“‘pre-loading”, exists when the pre-
loading policy is adopted. In the pre-loading policy,
a task which is to be activated stays in the pre-loading
state during loading of the working set. The ready
queue includes those tasks which are waiting for cpu
service and are in the paging state. The tasks in the
pending queue are waiting for promotion to ready
states due to the congestion of the multiprogramming
degree. The running, ready and pre-loading tasks are
called active tasks. Both the pending and blocked tasks
are called inactive tasks.

For the local LRU strategy, tasks are activated to
keep the number of active tasks at the maximum degree
within the number of the main memory partitions.
The activation candidate task is taken from the top of
the pending queue. Tasks are inactivated when the time
slice is over and when a terminal input request occurs.

For the working set strategy, tasks are activated to
keep the number of active tasks at the maximum degree
under the condition that the sum of working set sizes
of active tasks does not exceed the main memory size.
The activation policy of the on-demand paging strategy,
in which every page is loaded individually into the main
memory on demand, differs from that of the pre-loading
strategy, in which the working set is loaded when the
task is activated. In the pre-loading strategy, a task is
activated when the number of free pages is greater than
the working set size of the activation candidate task.
The working set size is evaluated as the number of
referenced pages in the window size T of the immediate

Runping Task

activate
Ready Pending
lnuchvute
Poge fault lTlmo slice ov Time slice over
Termmul input _end

Terminal input request

/
Blocked

» only in case of working-set strategy

Fig. 1 Task states and transitions.
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past virtual time. In the on-demand paging strategy,
the activation policy is more complicated. In this case,
even if the number of free pages is greater than the
working set size of the activation candidate task, some
active tasks may not yet have been assigned working
sets in the main memory. The task can be activated
when the number of main memory page frames minus
the sum of the working set sizes of the active tasks is
greater than the working set size of the activation
candidate task.

As for the task inactivation, the transition of a ready
task to the top of the pending queue occurs only in
the working set strategy. When all main memory page
frames are occupied by the working sets of active tasks
and the running task requests an allocation of a free
page frame, the ready task most recently activated is
inactivated. It is then placed at the top of the pending
queue to supply pages to be paged out.

Those pages which have never been changed during
their lifetime in the main memory do not need to be
actually transferred to the secondary memory in case
of page out. The probability that a page is changed
in the main memory is reported to be about 339/ in
the steady state measurements made at the computer
center of the University of Tokyo [4]. That is, 679,
of paged-out candidate pages are not actually trans-
ferred. Since it is expected that the value does not vary
so greatly in each environment, this value is used in
our simulation model. In the case of the pre-loading
strategy, however, all paged-out candidate pages are
actually transferred in order to load the whole working
set from the contiguous area of the secondary memory
at the next loading time.

3.2 Model of User Program Behavior
3.2.1 Paging Behavior Model

The SLRUM (Simple LRU Stack Model) [8] is
employed as the paging behavior model for user pro-
grams. This model can be used, as seen from the defini-
tion, only in the range in which page references of a
program are stable. The locality transfer of a program
needs another model, which is described later. Five
programs, which operated under the HITAC 8700/
8800 virtual operating system [5], were selected as model
programs, and the execution processes of these programs
were traced interpretively. Then the stack distance
probabilities were calculated within the range where
the page reference patterns are stable. Fig. 2 shows the
stack distance probabilities for these programs.

The execution steps between page faults are calculated
from the SLRU stack probabilitiess when a model
program is executed in a given memory size [6]. When
the most recently referenced j pages of a program exist
in the main memory, the probability Q; that the next
memory reference will cause a page fault is given by

p
Z q9;:+9qo
i=7+1
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Fig. 2 Stack distance probabilities of the model programs.

where gq; is the i-th element of the SLRU stack, p is
the maximum stack depth, and ¢, is the probability
that pages not included in the LRU stack will be refer-
enced. Then the number of memory references r be-
tween page faults is calculated as a sample from a
geometric distribution with the mean 1/Q;. Then r
can be found by
log log o
log(1-0) = “log(1-0)

where « is randomly sampled from a uniform distribu-
tion [0, 1). The execution steps between page faults
can be obtained by multiplying by a constant, which
is the ratio of the number of instruction memory refer-
ences to the total number of memory references.

3.2.2 Locality Transfer Model

As stated above, the SLRUM cannot express the
locality set transfer of a program. In a time-sharing
system, programs tend to use only short cpu times in
each interaction, and the transfer rate of the locality
set and the variation in the locality set sizes will be large.
The locality set transfer is modeled as described here-
after.

Each SLRUM consists of a set of stack distance
probabilities and represents page references in one
locality set during program execution. This is called

program phase. A program is modeled by combining
a series of program phases and the respective execution
times. During program execution, when a phase change
occurs, the related page requests take on the stack
distance probabilities of a new program phase. Those
pages referenced by previous program phases are kept
in the main memory as long as they are in the work-
ing set of window size T in the working set strategy,
and until replaced by other pages in the local LRU
strategy.

3.2.3 CPU Time Usage Model

It is important to obtain the cpu time usage distribu-
tion which each user program uses during one interac-
tion. An interaction is defined as an interval between
the time when a user finishes an input line and the time
when the user’s program requires input again. The cpu
time usage model which was measured at the computer
center of the University of Tokyo is used in the simula-
tion model. The original measurements were slightly
modified to fit the purpose of the simulation. For
instance, those interactions which spend more cpu time
than 5 seconds are excluded, because the effect will
be small for the evaluation of memory management
strategies and also the simulation time is limited. The
cpu time usage distribution per interaction is shown in
Fig. 3, when the mean processing time per instruction
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Fig. 3 CPU usage time distribution per interaction.

is adjusted to be 1.0 usec.

3.3 User Behavior Model

The think time distribution of the above system is
used as a user behavior model at terminals. The average
is 26.5 sec. the standard deviation is 38.6 sec. and the
median is 10.0 sec.

3.4 Dynamic Execution Steps in Operating Systems

Most studies to date do not account for the time spent
executing the operating system. However, especially
in a time-sharing system, the time spent per interaction
in the user program is usually short and the paging
rate tends to be high. Therefore, the operating system
execution time has a great effect on total system per-
formance. The execution steps used in the simulation
model are assumed as shown in Table 1.

Table 1 Dynamic execution steps in operating system.

Processing module Dynamic steps

{instructions)|
when free poges exist I 000
Page foult handling when no free pages exist. 3000
Task scheduler 200
Interrupt handiing from paging drum 1 000
running to ready 100
running to pending 15000
running to blocked 20000

ready to running 100

State change ready to pending 15000
pending to ready 200
pending to pre-loading 15000
blocked to pending 200
pre - loading fo ready 200
In working set to decide task activation 200
strategy to calculate working set size per active task 100

3.5 Simulation Environment

Since the purpose of this work is to analyze the
characteristics of memory management strategies, the
system resource which has an essential effect on total
system performance should be the main memory. After

T. MAsSUDA

some trial-and-error experiments were performed satisfy-
ing this condition, the following environment was
employed:

(1) cpu speed ~1 usec/instruction.

(2) Main memory size~80 page frames for user
programs.

(3) Paging drums are used as paging devices, which
have the following characteristics:

10 sectors/band, 4096 bytes/sector.

- mean access time ~ 10.3 msec.

- transfer rate ~2 msec/4096 bytes.

(4) Two paging channels are assumed.

(5) The real time intervals of 660 seconds are simu-
lated, and measurements are collected beginning at
the point where 60 seconds have passed in the simulation
system.

4. Simulation Results

4.1 Local LRU Strategy

In 4.1 and 4.2, the basic properties of the memory
management strategies are found. For this purpose,
it is assumed that the locality transfer of model programs
does not occur. Each program requests pages accord-
ing to the set of stack distance probabilities of one of
the model programs. The effect of the locality transfer
is discussed in 4.3.

The disadvantage of the local LRU strategy is that
the number of page frames allocated to each active
task cannot be changed dynamically during execution,
and the multiprogramming degree is not controlled.
The maximum multiprogramming degree is equal to
the number of the main memory partitions, and tasks
are activated up to the maximum degree without any
consideration of the paging traffic.

Simulation was carried out for the number of parti-
tions one to five. The results are shown in Fig. 4 when
the number of terminal users is 60. This number of the
allocated page frames for each partition is 80, 40, 26,
20 and 16, respectively; since the main memory size
for user programs is assumed to be 80 pages. Fig. 4
shows the average response time; the average multi-
programming degree; the average number of pending
tasks; the average inter-page fault intervals (MSBPF);
the total number of interactions during the simulated
interval (600 seconds); the average channel idle rate;
the average ratios of user program running time, operat-
ing system running time, paging idle time and pure idle
time to the total elapsed time; etc. The numbers in
brackets in Fig. 4 show the scale of the vertical axis.
The average response time is optimal when the number
of partitions is two. When the number of partitions
exceeds three, the average response time gets worse
quite rapidly.

The number of allocated page frames to each parti-
tion is larger than the maximum stack depth of any
of the model programs when the number of partitions
is equal to one or two. When the main memory is divided
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Fig. 4 Effect of the number of partitions on the system performance in the local LRU strategy

[Main memory size: 80 page frames
Number of users: 60 users

into three partitions, the maximum stack depths of
programs 3 and 5 are greater than the number of al-
located page frames, which is 26, and the replaced pages
will be reclaimed again. When the number of partitions
is equal to four and five, the maximum stack depth of
program 1 also exceeds the number of allocated page
frames. In this case, the inter-page fault intervals de-
crease rapidly, the time needed for page fault handling
increases rapidly and the responsiveness gets worse
rapidly. This is the ‘“‘thrashing” phenomenon. When
the number of partitions is one, the paging idle rate
increases.

From this analysis, it can be concluded that a small
difference of pages allocated to each program has a
great effect on total system performance. In the actual
system, it will be almost impossible to decide an ideal
number of partitions since locality set size differs among
users and varies during program execution. The defects
of the fixed partitioning strategy have been clarified in
Fig. 4.

4.2 Working set Strategy
4.2.1 Effect of Number of Users

The basic properties of the working set strategy are
discussed where no locality transfer of user programs
occurs. First, the effect of the number of users on system
performance is found.

The simulation was executed for 30 to 120 users.
As for the user program model, each user program

executes one of the five model programs. The window
size is assumed to be 100 K instruction steps which can
be found sufficiently large to include the locality sets
of the model programs. The average working set sizes
for this window size are 24, 17, 34, 13 and 28 pages,
respectively. Simulation results are shown in Fig. 5.
All the pages are loaded on demand. Some advantages
of the working set strategy will be found.

As the number of users exceeds 70, the number of
free pages converges to a constant value and the main
memory becomes the resource which effects system
performance critically. This can be seen from the fact
that the average pending queue length increases rapidly
as the number of users exceeds 70. The reason why more
tasks are not activated in this case, although about 45
free pages exist, is that some active tasks have not
loaded their whole working sets into the main memory.

As the number of users increases, the ratio of user
program running time to the total time increases. When
the number of users exceeds 80, the ratios of user
program running time, operating system running time,
etc. to the total elapsed time converge. When the number
of users is large, these ratios do not change and thrash-
ing phenomenon does not occur. In this example, the
maximum permissible number of users is between 70
and 80.

4.2.2 Effect of Window Size
Window size is the most important control parameter
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Window size:

in the working set strategy. When window size is too
small, the number of page frames allocated to each active
task becomes insufficient, causing the thrashing phe-
nomenon. When the window size is too large, many
pages not referenced in the near future reside in the
working set and the multiprogramming degree de-
creases.

When the window size is too large, two kinds of pages
with the possibility of not being referenced in the near
future will be included in the working set. One type is
caused by the properties of locality reference and
transfer. When the locality transfer occurs, many pages
of the past locality sets will reside in the working set
for a long time if the window size is large. The other
type is caused when a program requests new data pages
with high probability, which become unnecessary in
a short time interval.

The effect of window size on average response time
is shown in Fig. 6 when the number of users is 80.
As window size is decreased to around 10 K instruction
steps, response time increases rapidly, and the thrashing
phenomenon occurs. When the window size increases
to approximately 10° instruction steps, then the response
time again increases in spite of no locality transfer in
user programs. This is because three model programs
out of five request pages not contained in LRU stack
at fixed probabilities ¢,, even after the number of page
frames allocated becomes greater than the maximum
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Fig. 6 Effect of window size on responsiveness.
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stack depth. In the model program 2, for instance, the
average working set size is calculated as 71 pages, when
the window size is 10° instruction steps. Consequently,
when a user task of the model program 2 is active, no
other user tasks are activated.

In this example, the responsiveness is satisfactory
for window sizes between 30 K and 300 K instruction
steps. Any window size will be allowed in this range.
It is a great advantage that the range of available window
sizes is wide.
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4.2.3 Task Activation Criterion

In the on-demand paging policy, as shown in Fig.
5, about 509 of the main memory pages are available
even when the system is fully loaded. These free pages
are reserved for those active tasks for which the working
sets have not wholly been loaded. In a time-sharing
system, a considerable amount of interactions goes
into the blocked states before loading the whole working
set into the main memory, because many interactions
use the cpu time less than a few tens of milliseconds as
shown in Fig. 3. Consequently, the task activation
decision policy described in 3.1 will be too strict in
the on-demand paging policy. Therefore, the effect of
relaxing the activation decision policy is analyzed.
Some notations are defined below:

a set of current active tasks: A= {i}
the current working set size of a task i: wy(¢, T)
the number of page frames currently allocated to a
task i: my
the activation candidate task: j
the working set size of the task j: w1, T)
the main memory size: M pages
The task j is activated if
Y mtay -y (wlt, TV—m)+oa,. wit, )M
ied ied
Here 0<a,<1 and O<a,<1 are activation control
parameters. When o, =a,=1, this condition is con-
sistent with the one described in 3.1. ZA w(t, T)—m)
LE.

expresses the expected number of additional pages
needed to load entirely the working sets of the current
active tasks into the main memory. The w(r, T) is
equal to m; for those active tasks which have already
spent more cpu time than the window size T since
activated. As «, and «, are set small, the activation
condition is relaxed. The response time is shown in
Fig. 7 for various values of a; and a,, when the window
size is 100 K instruction steps and the user number is
80. In this case the best response time is found for
;=06 and a,=0.4 When o, =a,=0, every pending
task is activated independent of the memory load.
Consequently, inactivation of the task to a pending
state occurs frequently and the responsiveness is quite
poor. The optimal values of «, and a, should be decided
in each system.

4.2.4 Effect of Pre-loading Policy

The effect of pre-loading, where the working set is
loaded into the main memory at the task activation
time, is analyzed. Page faults which occur after loading
the working set are, of course, handled by the on-
demand policy.

The advantages of the pre-loading policy are twofold.
One is the possibility of improving the utilization rate
of paging channels. This is because pages belonging to
the working set can be transferred from consecutive
sectors by one input request. The other is the possibility
of decreasing the paging rate to reduce execution time
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Fig. 7 Effect of the task activation control on responsiveness.
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of page fault handling. The disadvantage of pre-loading
is that some pages may not be referenced at all after
the working set is loaded. Therefore, the pre-loading
strategy is advantageous when the page reference
patterns of user programs are stable. No locality transfer
in user programs is assumed in this section.

Simulation results show that the pre-loading policy
is much superior to the on-demand policy in case of no
locality transfer. The average response time is 5 sec.
for 120 users in the pre-loading policy, while it is S
sec. for 80 users in the on-demand policy. The mean
instruction steps executed between page faults are 70 K
steps and 7 K steps, respectively. In the pre-loading
policy, the number of free pages is very few when the
system is fully loaded. Since the page fault rate is low,
both the operating system running time and the paging
idle time decrease, and the user program running time
increases. From this analysis, it can be concluded that
the pre-loading policy is much superior to the on-
demand strategy when the locality transfers of user
programs are not considered.

4.2.5 Comparison of the Working Set Strategy with
the Local LRU Strategy

The basic properties of the working set strategy and

the local LRU strategy have been brought out by the

foregoing analysis. Now we will compare these two

strategies with regard to responsiveness. The result is
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Fig. 8 Responsiveness of the working set strategy and the local
LRU strategy.
~Main memory size: 80 page frames

shown in Fig. 8. In the local LRU strategy, the effect
of the number of memory partitions on the responsive-
ness is very large, and the system performance tends to
be degraded as variations of working set sizes among
user programs increase.

The response time of the working set strategy with
the on-demand paging policy is almost always 209,
better than that of the local LRU strategy with the
partitioning number equal to two. Furthermore, the
average response time of the pre-loading policy is much
better than that of the on-demand policy, since no
locality transfer is assumed for user programs.

4.3 Program Model with Locality Transfer

The effect of locality transfers in user programs is
considered. If locality transfers occur very frequently,
any memory management strategies, which estimate
the locality set, will be useless. In the actual systems,
however, memory management strategies estimating
the locality set are known to have positive effects on
system performance, even if locality transfers occur.

The locality transfer model is assumed to be the model
described in 3.2.2. Each user program executes one of
five model program phases during a fixed period and
then selects another program phase for execution during
the next period. This period is designated as the locality
length. The effect of locality length on average response
time is shown in Fig. 9, when the number of users is
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Fig. 9 Effect of the loca.hty transfer rate on responsiveness
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60 and the main memory size is 80 pages. As the locality
transfer rate increases, responsiveness deteriorates rapidly
and, in particular, becomes more sensitive to changes in
window size. This is because when the locality transfer
rate is high, many unused pages are included in the
working set as window size increases and the multi-
programming degree decreases.

The multiprogramming degree is shown in Fig. 10,
when the locality transfer occurs every 103 instruction
steps and 108 instruction steps. When a locality transfer
occurs every 10% instruction steps, the multiprogramming

AVERAGE MULTIPROGRAMMING LEVEL

e ,LL=10%

I \ 1 - L )
[ 2 3 5 10 20 30 S0 100
WINDOW SIZE (X10*INSTRUCTIONS )

Fig. 10 Effect of the locality transfer rate on the multiprogram-
ming degree (on-demand paging strategy).
{an memory size: 80 page frames
Number of users: 60 users
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degree goes down rapidly as window size increases and
the paging and channel idle rates increase. Responsive-
ness deteriorates rapidly as window size increases over
10° instruction steps. In comparison, when a locality
transfer occurs every 10® steps, which means that
actually no locality transfer occurs during simulation,
the multiprogramming degree decreases gradually as
window size increases. As explained earlier, this is
because some model program phases request pages not
included in their LRU stacks at fixed probabilities g,
and the working set size increases slowly. The rapid
decrease in the multiprogramming degree for window
sizes up to 30 K steps shows that about 30 K steps are
necessary to reference the whole working set of a program
phase.

As shown above, the range of feasible window sizes
becomes narrower when locality transfers exist. Window
size should be as small as possible, so as not to include
unnecessary pages in the working set, but large enough
to include the locality set of a program phase. In Fig. 9,
the feasible window size range should be between 30 K
and 50 K instruction steps.

When locality transfers occur, working set size
increases intermittently and many pages belonging
to previous phases are included in the working set.
To reduce this undesirable effect, it is useful to control
the maximum number of pages allocated to a task.
This mechanism is also useful for preventing the pro-
grams with extremely large working set size from
degrading the total system performance. Fig. 11 shows
the effect of the maximum page allocation control on
responsiveness for the locality transfer occuring every
200 K steps and 500 K steps, when the number of pages
allocated to a task is limited to 35 pages. The solid
lines indicate where the maximum page control policy
is not specified, and the dotted lines where it is specified.
Responsiveness improves greatly where the window
size is large.

The effectiveness of pre-loading policy will decrease
when the locality transfer takes place, since the swapping-
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Fig. 11 Effect of the maximum page control on responsiveness
(on-demand paging strategy).
~{Mam memory pages: 80 page frames
Number of users: 60 users
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of memory management strategies.
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in probability for unused pages becomes high. Fig.
12 shows how the locality transfer affects the effective-
ness of pre-loading. As locality length decreases, the
responsiveness of pre-loading policy degrades as is the
case with the on-demand paging strategy. The dotted
line which gives the optimal responsiveness is the
result of adopting both the maximum page control
policy and the pre-loading policy.

5. Conclusion

Multiprogrammed memory management strategies
have been extensively investigated using simulation
techniques. In particular, the working set strategy,
which is a representative variable partitioning strategy,
has been analyzed in an environment approximating
actual systems operating conditions. The local LRU
strategy, which is a representative fixed partitioning
strategy, has been also investigated for comparison with
the working set strategy. In these analyses, the effect
of locality transfers in users programs has also been
considered. Simulation results are summarized as
follows:

(1) In the fixed partitioning strategies, such as the
local LRU strategy, the effect of the number of main
memory partitions is too great for the strategies to be
used in actual systems.

(2) In the working set strategy, the feasible range
of window size is wide. For the five model programs
selected in this paper, the window size for referencing
the whole locality set is approximately 30 K~ 50 K
instruction steps.

(3) The pre-loading policy of the working set strategy
improves responsiveness when the locality transfer
rate is not excessively high.

(4) It is useful to control the maximum number of
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pages allocated to a task, so as to exclude unnecessary
pages from the working set and prevent programs with
extremely large working set size from degrading total
system performance.

(5) The locality transfer rate of user programs has
a great effect on the total system performance in the
working set strategy.

The program behavior models proposed to date have
not produced working models in which locality transfer
rates or locality set size variations are accounted for
precisely. In addition, few actual measurements have
been reported regarding the extent of locality transfer
rates or locality set size variations. Further work is
required for modeling these aspects more precisely,
and more actual system measurements of these aspects
must be collected.

Finally, some comments are given for the simulation
programs used. The simulation programs are im-
plemented by FORTRAN. Program size is about 4 K
statements for the working set strategy and 3.3 K
statements for the local LRU strategy. The simulation
speed is about one third of real time, using the HITAC
8700; i.e., the simulation of 10 minutes requires about
200 sec. cpu time in the HITAC 8700.
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