On the Number of Multiplications
Required for a Matrix-vector Product

AKIHIRO NOZAKI*

In this paper we strengthen Winograd’s result on the number of multiplications required for a matrix-
vector product, so that the multiplications by constant factors can also be counted. We show some examples
for which sharp bounds can be obtained from our result.

1. Introduction

In practice, we are often asked to compute a given set
of polynomials. Such a problem can be considered in
many cases as the computation of the product of a matrix
M and a column vector x. The element of M are poly-
nomials and the components of x are indivisual variables.
In 1970, S. Winograd formulated this type of problems
and considered the number of required multiplications
for computing the product of such a matrix and a column
vector. He defined the notion of column rank of a matrix,
on the basis of a modified version of linear independence,
and established a lower bound of the number of multi-
plications as following.

Any computation of Mx requires at least g ‘‘active’’
multiplications, where g is the column rank of M.

This result is a basic tool for proving the optimality of
some general algorithms, such as Horner’s rule for
evaluating arbitrary polynomials.

In this result, however, the multiplications by constant
factors were disregarded. So the obtained lower bound
was not always useful, especially in such specific cases as

follows.
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The column ranks of these matrices are equal to zero
and hence no ‘““active” multiplications are required for
these products. Nevertheless, if we count the multi-
plications by constants such as 1.3y, a number of multi-
plications sould be indispensable.

In this paper, we introduce another variant of linear
independence, Z-independence, and show the validity of
an analogous result as following.

*Faculty of Engineering, Yamanashi University, Takeda-4, Kofu,
Yamanashi 400, Japan.

Journal of Information Processing, Vol. 1, No. 3, 1978

Any computation of a product Mx requires at least s
multiplications involving x, where s is the number of Z-
independent columns of M.

Our number s is not less than the column rank ¢ of the
matrix M. We shall see that one multiplication is sufficient
for the product (1) and also for the product (3), while
two multiplications are necessary for the product (2).

2. Formulation of the Problem

We shall review here basic notions mainly after Aho-
Hopcroft-Ullman (1974).

We use variable names with or without suffices, e.g.,
X, ¥, X1, X5, etc. Some of these variables are called input
variables or simply inputs, when they represents indeter-
minates in the polynomials to be multiplied.

A computation is a sequence of steps of the form a«
béc, where 6 is +, — or x, a is a non-input variable
name, and b and c are either inputs, constant real num-
bers, or variable names appearing on the left of the arrow
at some previous steps. For convenience, we allow also
the steps a«0 and a«—d ™!, where d is a constant real
number.

Example 1 Inputs are represented by x and y.
Sex+Y, vel.1xu,
tes+s, wev—1I.
u—t+y,

Example 2 Inputs are represented by x and y.

Uy &ex-—y, ui‘_“4+u4’
Uy ey +uy, Ug+—us+y,
Uy Uy + X, Uy e—Ug+ Uy,
uy—(1/6) x us, UgUz—U,.

We associate in the usual manner to each non-input

variable u its value v(u). For instance, in Example 1,
v(t)=2x+2y, ov(w)=0.2x+1.3y.

Let x be a column vector of the form [x, ..., xq]T,
where x;’s are distinct input variables. A multiplication
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involves x iff the value of one of the operands multiplied
depends on one of these variables x;’s.

Let E be a column vector whose. components are
polynomials with input variables. A computation com-
putes E iff for each component e of E there is some
variable f in the computation such that v(f)=e. The
computation in Example 1 computes the vector [0.2x+
1.3y], that is, the product (1) in Section 1. The computa-
tion in Example 2 computes the product (3) in Section 1,
since

v(ug)=x+(1/3)y and o(ug)=(1/2)x+y.

Thus one multiplication is sufficient for the product (3)
as well as for the product (1).

Remark We do not claim that the computations in
these examples are of practical interest, unless multiple
precision arithmetic is involved. However, it should be
noted that in certain domains multiplications are arbi-
trarily more costly than additions and subtractions.

We denote by R the whole set of real numbers and by
Z the whole set of integers. We represent by Rla,, . . .,
a,] the set of all real polynomials over the indeterminates
a,...,a,

In what follows, we consider a matrix M with p rows
and g columns, whose elements are in R[a,, . . ., a,}, and
a column vector x of the form [x,, ..., x,]7, where
Xi, ..., X, are variable names distinct from a4, ...,
a,. Our aim is to give a lower bound to the number of
multiplications involving x for evaluating the product
Mx.

Definition 1 Suppose that »(1), ..., v(¢) are p-dimen-
sional vectors whose components are in Rla,, . . ., a,].
1) These vectors are said to be Z-dependent iff there
exist integers k,, . . ., k, satisfying the following condi-
tions.
ki-o(D+....+k,-o(t)e 2P, (1a)
GCD(ky, . . ., k)=1, (1b)
where GCD stands for the greatest common divisor.

For convenience, we define: GCD(m)=|m|, GCD(0)=0
and

GCD(,...,0,k,...,=GCD(k, ..., h).

For v=(v,,...,v,), we denote GCD(v,,...,v) by

GCD(v).

2) These vectors are said to be Z-independent iff they
are not Z-dependent, or equivalently, iff for any integers
ky, ..., k, the condition (l1a) implies that

GCD(ky, ..., k)#1. (1)
For instance, the vectors [0.2] and [1.3] are Z-dependent.
The following sets of vectors are Z-independent.

1) [1.3]
2) (02, V2, [n]

> [Vl
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3. Imteger Matrix Invertible in the Domain Z

In this section, we shall give some preliminary lemmas
on integer matrices whose inverses are also integer
matrices.

An integer matrix is said to be invertible in the domain
Z, or Z-invertible in short, iff it is a square matrix and its
determinant is equal to +1 or —1. If a matrix is Z-
invertible, then it is nonsingular and its inverse is again a
Z-invertible integer matrix. If both of the matrices N
and N’ are Z-invertible, then so is their product NN'.

Example 1 The following matrices are Z-invertible.

1 0 0] -1 30
0 1 0 0 1 0
5 =2 -1 0 -7 1

More generally, a matrix is Z-invertible if it satisfies the
following conditions.
(a) Each of its diagonal elements is either +1 or —1.
(b) There is at most one row or one column which
contains non-zero non-diagonal elements.

Example 2 Let us consider the matrix P(i, j) obtained
from the identity matrix by exchanging its i-th row and
J-th row. Then it is always Z-invertible.

Lemma 1 Let k be a k-dimensional integer vector and
N a Z-invertible matrix with k rows and k columns. Then
it is the case that

GCD(k)=GCD(Nk).

Proof Every component of Nk is a linear combination
of the components of k with integer coefficients, and
hence is an integer multiple of GCD(k). Thus GCD(Nk)
is an integer multiple of GCD(k). The converse is also
true, since

k=(N"Y(Nk).

Lemma 2 Let M be a matrix with p rows and ¢ columns,
whose elements are in R[a,,...,a,]. Let N be a Z-
invertible matrix with g rows and g columns.

The set of all columns of M are Z-independent iff so
is the set of all columns of MN.

Proof We prove the contrapositive statement: the col-
umns of M are Z-dependent iff so are the columns of
MN.

If the columns of M are Z-dependent, then there is an
integer vector k such that Mke Z? and GCD(k)=1. It
follows that

(MN)N " 'k)ez*
and by Lemma 1,
GCD(N " 'k)=1.
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Thus the columns of MN are also Z-dependent. The
converse is also true, since N ! is Z-invertible.

Lemma 3 For any integer vector u, there is a Z-
invertible matrix N such that

Nu=[0,0, ...,0, GCD®)]".

Proof The proof proceeds by induction on the minimum
absolute value h of non-zero components of u:

h=Min{|u;||u; 0}.

Let ¢ be the dimension of the vector u.
Basis. A=1. Suppose that |u,|=1. Then the condition
of the lemma is satisfied by the following matrix N,
which can be obtained from the identity matrix by re-
placing its g-th column by [—u,u,, . . ., —ug_ 14, )"
1
No= .
l *
u

q

For the case when |u;|=1 and i#gq, we define N, for the
vector P(i, ¢)u and apply the product Ny P(i, q) to u.
Inductive step. 4> 1. Suppose that ju;=h. We consider
the values k; and h; defined by the following relations.

ujzkjui+hj’ Oéhl<h
for j#i, and
k;=—~u;lh, h=h.

Now let N, be the matrix obtained from the identity
matrix by replacing its i-th column by [—k,, ...,
—kiy ..., —kg]". Then

Nu=[hy, ..., h)".

Let 4 be the minimum absolute value of non-zero
components of N,u. If &' =h, then h;=0 for all j#i. It
follows that

h=h,=GCD(N,4)=GCD(u).

Hence the condition of the lemma is satisfied by the
product P(i, ¢)- N,. Now suppose that 4’ <h. By inductive
assumption, there is a Z-invertible matrix N, such that

N,h=[0, ..., 0,d],
where h=[h,, . .., h]" and
d=GCD(h)=GCD(N,u)=GCD(u).
Thus the condition of the lemma is satisfied by N=N,N,.
4. Main Theorem
Lemma 4 The product Mx can be obtained without
multiplication involving x, iff all elements of M are

integers.

Proof (If) Obvious, since a multiplication by an integer
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can, at least in principle, be replaced by successive addi-
tions or subtractions.

(Only if) If an element y, of the product Mx is obtained
without multiplication involving x, then the value of y,
can be represented by the following expression:

Xyt ... X+ P,

where ¢,, . .., ¢, are integers and P is a polynomial in
Rla,, . . ., a,]. Therefore every component of the i-th
row of the matrix M must be an integer. Since i is arbi-
trary, M is an integer matrix.

Theorem 1 Let M be a matrix with p rows and ¢
columns, whose elements are in R[a,, . . ., a,). Let x be
a vector of the form [x,, . . ., x,]7, where x;’s are varia-
bles distinct from a;’s.

If the matrix M has s, Z-independent columns, then
any computation of Mx requires at least s multiplications
involving x.

Proof We assume without loss of generality that the
first s columns of M are Z-independent. We denote by
u(i) the i-th column of M. We consider a submatrix

M'=[u(l), ..., u(s)]

of M and a vector x' =[x, ..., x]".

(A) If r multiplications involving x’ are required for the
product M’x’, then r multiplications involving x are
indispensable for the product Mx.

Suppose that ¢t multiplications are sufficient for Mx.

Then, we can evaluate the product

M'x'=M-[x,,...,%,0,...,0

in ¢ multiplications involving x. Since no multiplications
independent of x can involve x’, it is the case that

r<te.

Hereafter, we assume that M has exactly s columns.

(B) If all columns of M are Z-independent, then s (=gq)
multiplications involving x are required for the
computation of Mx.

The proof proceeds by induction on s.

Basis. s=1. Since u(l) is Z-independent, it is not an
integer vector. By Lemma 4, at least one multiplication
involving x is indispensable.

Inductive step. s>1. Let C be a computation of Mx
which contains ¢ multiplications involving x. Again by
Lemma 4, t#0. Suppose that fg x A is the first multi-
plication involving x in C. Then without loss of ‘gen-
erality, we can assume

v(g)=cyx;+ ... +ex+ P,

where ¢=[c,, . . ., ¢ is a non-zero integer vector and
P is a polynomial in Ria,, . . ., a,]. By Lemma 3, there
is a Z-invertible matrix N such that
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Ne=[0, . ..,0,d],

where d=GCD(c).

Now let o(1), . . ., v(s) be the columns of the product
M(NT). By Lemma 2, these vectors are Z-independent.
Therefore, its subset o(l),...,vs—1) are also Z-
independent. By inductive assumption, any computation
of the product

z=[o(1), ..., o(s=Dllyy, - - s Yeurl”

requires at least s—1 multiplications involving y=
[yh B ’y:—I]T-

We shall now construct a computation C’ which
evaluates the value of z in #— 1 multiplications involving
y. We utilize the following relation.

z=[o(1), . . ., o(s—1)]y

=[0(1), ey v(s)][ylv e Vs—1 -d- lP]T
+o(s)(dP)
=M(Nlyy, ..., Vo1, —d 'P)D) 4 0(s)(d ' P).

First, we determine the value of x as follows.
x=NTly,,...,y_y, —d"'P]".

Since N7 is an integer matrix, this can be done without
multiplication involving y. Then we compute the product
Mx for this value of x, utilizing the computation C with
feg x h replaced by f<0. The validity of this modifica-
tion is verified in the following manner.

@ =lcy,....cQ[x1, ..., x]"+P
=ley, oo s )NV, - ooy Pgmys —d TP+ P
=(NO)yys . o -y Vg1, —d"P]"4+ P
=[0,...,0,d)[ ...,—-d"'P)"+P
=—P+P=0.

Finally, we calculate the term o(s)(d ~!P) and add it to
Mx. By the relation shown above, the result is equal to
z. Since this term is independent of x, no multiplications
involving x are required for this calculation.

After all, 7— 1 multiplications involving x are sufficient
for the evaluation of z. Since only these multiplications
can involve y, we can say that r—1 multiplications in-
volving y are sufficient for evaluating z. It follows that

s—1g1-1,

that is, ¢ is not less than s. This completes the proof of
the theorem.

It is now immediate that the product [0.2 /2 n]
[x y z]" requires at least three multiplications. The
product (2) in Section 1 requires at least two multiplica-
tions, since the vectors

[} L)

are Z-independent.
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4. Miscellaneous Results

On the number of multiplications, other lower bounds
were given by Fiduccia (1971). We can state analogous
theorems in terms of Z-independence.

Theorem 2 . Let M be a matrix with elements from
R[a,, . . .,a,] and let x be the column vector [x,, ...,
x,]”. If the matrix M has s Z-independent rows, then any
computation of Mx requires at least s multiplications.

Theorem 3 Suppose that a matrix M has a submatrix
S with 4 rows and k columns, satisfying the following
condition.

For any vectors u and v in Z" and in Z*, respectively,

(u")Sv is an integer iff u=v=0.

Then any computation of Mx requires at least A+k—1
multiplications.

The proofs of these theorems are quite similar to those
of Theorem 12.1 and Theorem 12.3 in Aho-Hopcroft-
Ullman (1974) and therefore are omitted.

Remark If the rows of an integer matrix N are linearly
dependent, there is a non-zero integer vector y such that
yTN=0. Besides, by reducing common divisors, we can
assume without loss of generality that GCD(y)=1. By
this fact, we can convert Fiduccia’s proofs into the proofs
of our theorems.

When the columns of a matrix M are not Z-independ-
ent, we can transform the product Mx into M'y, where
M’ is a matrix with at least one integer column. We
describe briefly how this can be done.

If the columns of a matrix M are Z-dependent, then
by definition there is an integer vector v satisfying the
following conditions.

(a) The vector Mv is an integer vector.

(®) GCD()=1.

By Lemma 3, there is a Z-invertible matrix N such that

Nv=[0,...,0,1]".
Then obviously,
Mx=(MN ") Nx)=M’y,

where M'=MN ~! and y = Nx. The last column b of M’
is an integer vector, as it is verified in the following
manner.

b=(MN™ Y0, ...,0,1]"=Mno.

Example
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and

Therefore,
R R
-7 ]
=[ 4]~(1/6)-(3xj-2;)+[_{l(x+y).

A similar computation to Example 2 in Section 2 can
be obtained from the last expression.
We have considered as the base set only the set R of
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real numbers. But in fact we can replace R by any com-
mutative domain F containing a prime field of charac-
teristic zero. In that case, the set Z of integers should be
replaced by the ring generated by the identity of multi-
plication in F.
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