An Experiment on the General Resources Manager
in Multiprogrammed Computer Systems

ToHRU NISHIGAKI*, CHIAKI IKEDA*, KAZUHIKO OHMACHI*, and KENICHIRO NOGUCHI**

This paper presents experimental results on a new resource scheduling algorithm for balanced response/
throughput optimization. The scheduling principle is based on a feedback concept, which keeps the utilization
of each resource and the service of each process within prespecified ranges.

Although this principle has been introduced by the OS/VS2 Release 2 System Resources Manager (SRM),
it uses only swapping as a basic control means. This makes the SRM ineffective in an undercommitted real

memory environment,

The new algorithm, termed the General Resources Manager (GRM), controls performance by adjusting the
allocation priority for a central processing unit and channels, as well as swapping.

Measurements on the empirical implementation have revealed high performance for the GRM in various
time-sharing/batch environments, as compared with the algorithm which employs only swapping.

1. Introduction

Recently resource scheduling algorithms based on a
feedback concept have begun to be in use [1][2]{3]. They
are considered very promising to satisfy two perfor-
mance objectives—response and throughput. Such an
algorithm periodically monitors the service supplied to
each process, and control so as to keep it within an
acceptable range. Bernstein and Sharp proposed this
kind of algorithm [2)[3] which can attain a satisfactory
response/turn around time, by introducing a service
function called a “Policy Curve”. However, to our
knowledge, a feedback scheduling algorithm addressing
a balanced achievement of the two objectives was first
implemented in the OS/VS2 Release 2 System Resources
Manager [1]. The System Resources Manager (SRM)
improves both throughput and response by keeping
not only service of a process but each resource utiliza-
tion within a prespecified limit. For this purpose, the
SRM employs swapping (real memory allocation), as
a basic control means. The use of swapping, however,
confines the applicability of the algorithm. This is be-
cause swapping is effective only in overcommitted real
memory environments. Apparently, as processes’ work-
ing-set sizes change, this condition is not always met.
This has inevitably necessitated an algorithm which can
cope with diverse environments.

A new resource scheduling algorithm is developed.
This algorithm, the General Resources Manager (GRM),
controls performance by not only swapping but schedul-
ing of various resources such as channels and a central
processing unit. By paying attention to “constraints on

* Systems Development Laboratory, Hitachi, Ltd.
** Software Works, Hitachi, Ltd.

Journal of Information Processing, Vol. 1, No. 4, 1979

resource allocation”, the GRM associates resource
allocations with each other, that had previously been
done independently. During this procedure, the system
state is monitored periodically, and the allocation
mechanism is adjusted when a bottleneck occurs with
the resource.

The purpose of this paper is to reveal the improved
conditions that are possible for the GRM with respect
to response and throughput in undercommitted as well
as overcommitted real memory environments. An
empirical implementation of the GRM made it possible
to obtain some measurement results. In addition,
simulations were carried out as a supplement.

2, Definition of States and Objectives

The problem is to assign resource allocation priorities
in such a way as they attain balanced response/through-
put optimization. A general control policy has to be given
for each system state to achieve the objectives. To
begin with, states and objectives are defined.

(1) The objective of a resource utilization control

A “‘resource” means a logical unit. A channel is a
logical channel and a CPU is a unique resource regard-
less of the actual number of processours utilized. As for
real memory, a working-set [5] is treated as the unit of
allocation, instead of each page frame.

Let u; be the utilization of resource j and p; be the
lower limit of the acceptable range. Resource j is defined
to be either “busy” if u;>p;, or “idle” if u;<p;. Con-
sequently, the system with n resources has 2" distinct
states. The control objective is given by eq. (1).

uijzp; (J=12---,n 0Y]

A resource service requester is called a “transaction”.

188

A batch job or a terminal-initiated command becomes a
transaction. In order to identify a transaction for
resource utilization control, the resource use charac-
teristic v;; is defined as follows: v;; is the percentage
amount supplied to transaction i in the total capacity
of resource j where no resource contention is assumed.
Transaction i is called “a heavy user of j” if v;; is of a
large amount.

(2) The objective of service distribution control

Resource service count of transaction i is accumulated
resource service amount that has been supplied to
transaction i. It is measured in the service units (s.u.)
and calculated by eq. (2).

R(D)=Y e;r,(7). @

Transaction age 7 represents the elapsed time measured
from the i’s arrival. r;;(t) represents the service amount
of resource j which has been provided to i during 7. e,
is its weight. The Policy Driven Scheduler [2][3] at-
tempts to keep R(7) above a Policy Curve f(1). However,
the scheduling algorithm presented here employs a
Performance Objective g introduced by the SRM [I]
as a service objective function. This is because g is more
adaptable to changes in the workload [1][2][3]. g specifies
an ideal resource service rate as a function of the work-
load level. It is assumed that g is a monotonously
decreasing function.

Let S; be transaction i’s resource service rate (=the
resource service amount that is being supplied to transac-
tion 7 per second.) and g be the Performance Objective
which is associated with i. Here, S; is given as the slope
of R(7). The Normalized Workload Level (NWL) of i
is given by the following equation (See Fig. 1):

NWL,=g7(S)), 3)

where g ~! represents the inverse function of g.

Policy Curve £

Resource Service Count

Transaction age T

s.u./sec

Performance
L] S Objective g

[}
|
Y
1
1
1
1

Resource Service Rate

NwL, Workload Level

Fig. 1 Service objective function: Policy Curve, Performance
Objective.

T. NisHiGAKI, C. IKeDA, K. OumAcHI and K. NoGUCHI

The state can be defined by each transaction’s NWL.
The control objective is the minimization of the NWL’s
deviation, as shown in eq. (4):

Y (NWL,; —~NWL)? > min, “)
7
where NWL represents the mean of NWL. This objec-
tive ensures the supply of the relative rather than the
actual resource service rate to each transaction.

3. The General Resources Manager

The general control policy is an integrated priority
assignment scheme that is utilized to attain eq. (1) and
(4). In this policy, the assignment of an allocation
priority for a resource is associated with those for other
resources. The concept of ‘‘constraints on resource
allocation” is used to obtain the policy.

In such a case where a transaction has to be allocated
resource A in order to request the service of resource B,
A is called B’s predecessor, and B is called A’s successor.*
The relation is expressed as follows:

(0—~01Ce)

Assuming that A is “busy” and B is “idle” the utiliza-
tion of B can be improved by giving precedence to B’s
heavy users in the allocation of A. In addition, the
deviation of NWL can also be controlled by adjustment
of the allocation priorities for A. This is because a
“busy” resource is a key resource in service distribution.

The constraints on the allocation for CPU, channels,
real memory, and virtual memory are depicted in Fig. 2.
For example, if the real memory is “busy” and the CPU
is “idle”, the CPU utilization can be improved by
swapping-in CPU-bound transactions. Swapping is
also effective for controlling response/turn around time.
On the other hand, if the CPU is ““busy’” and the channels
are “idle”, the utilization of the channels can be im-
proved by increasing the dispatching priorities of the
I/O bound transactions. In this case, the adjustment of
dispatching priorities is also effective for controlling the
service distribution.

Fig.2 An example of resource allocation constraints.

* Naturally a successor of B is also A’s successor.

Af, Aoslei

An Experiment on the General R ces iger in iprogr

The control objective given by eq. (1) is re-defined by
eq. (5), because only CPU and channels have to be busy
for throughput improvements.

u;2p; (j=CPU, CH))

The above discussion leads to the following general
control policies to achieve eq. (4) and (5) in each state.
e The resource utilization control policy:

Increase the priorities of an ‘“idle” resource’s heavy
users, for allocation of such resources as are ‘“busy”
and predecessors of the ““idle” resource.

e The service distribution control policy:

Increase the priorities of those transactions which
have relatively large NWL and decrease ones of those
which have relatively small NWL, for allocation of
“busy’’ resources.

Priorities are computed periodically, subject to the
control policies mentioned above. Here, resources
enclosed by the dashed line in Fig. 2 are considered.

Transaction i’s priority for a real memory allocation
P(RM) is given by eq. (6). However, no swapping is
done if the sum of all transactions’ working-set sizes
does not exceed the real memory capacity; i.e., real
memory is “idle”. In such cases, the real memory is
allocated to all transactions.

P{RM)=a,,-CP(RM)+ B, - IO(RM) +7,,- WL(RM).
(6)

oy, By and yy, in eq. (6) are weights for balancing the
response and throughput. Note that CPU and channels
are successors of the real memory. For simplicity we
assume transaction / uses only channel#m. Each term
of eq. (6) is given as follows:

CP{(RM)=v; cpy-dcpy-(Pcpu— uCPU)2
I0(RM) =0; cym" Ictm* (Pcim _uCHm)z ™
WL(RM)=(NWL,—NWL)-|INWL, -NWL|

1:u;<p;

8= (j=CPU, CHm) ®
0:u;2p;

u;, v; and NWL; are periodically monitored. v;; is

computed as follows, where transaction i is assumed to

use channel# m 4¢’, at every At of CPU execution.
{v,-.cpu =100-Az/(At+At')

, ,)
V; cum = 100- Az’ /(A1 + At’)

Transactions with high priority are swapped-in, and
allocated the real memory of their working-sets.

The algorithm described above is based on an idea
which has been introduced by the SRM. In other words,
the SRM loses its controllability when the real memory
is mostly idle.

Transaction i’s priority for CPU allocation P,(CPU)
and channel#m allocation P(CHm) are given by eq.
(10) and (11) respectively. However, the priority is
changed only when each resource is “busy”.

d Computer S, 189

P(CPU)=a,-10,(CPU)+ §,- WL (CPU)
10(CPU) = (1 —b¢y,,)-OLDCHm
+0ctm*{ Vi,cm (Pcm —Uoum) (10)
WL,(CPU)=5-(NWL,—NWL)
P(CHm)=a,-CP(CHm) + §,- WL,(CHm)
CP(CHm) = (1 —§¢py)- OLDCP
+8cpu v+ Vi cpu* (Pepu —Ucru) (an

WL(CHm)=¢-(NWL,—~NWL)

Note that channel#m is a successor of the CPU and
the CPU is also a successor of channel#m. «,, 8, «,
and f. are weights for balancing the response and
throughput. {, n, vand & are positive constants. OLDCHm
in eq. (10) and OLDCP in eq. (11) represent 10,(CPU)
and CP(CHm) computed last time respectively. They
are used because the priority modification for the
resource utilization control should not be done when
resources are ‘‘busy”’.

The CPU is dispatched to the “ready-to-execute”
transaction with the highest priority P(CPU). The dis-
patching algorithm of eq. (10) shares its objective with
the dynamic dispatching control [6}—improved use of
channels. However, the dynamic dispatching control
has no control over service distribution. The service
distribution based on eq. (10) conceptually includes
the traditional time-slicing control [4).

I/O operations requested by the transactions are
executed in the order of decreasing priority P(CHm).
The only difference between the CPU and channel
allocation is that the CPU is preemptive while channels
are not.

4. Experiments

4.1 Measurements

The GRM was implemented on our large scale com-
puter M-180. As the first step of the implementation,
the allocation priorities of the two resources, real memory
and CPU, are determined by the GRM control policy.
The average computing interval for P(RM) and P(CPU)
are about 4 sec and 2 sec respectively. Since we chose
rather CPU-bound workload in the experiment, the
omission of the channel scheduling is not considered to
affect the measurement results. The study on the GRM
including the channel scheduling would be our further
research concern.

As was mentioned above, the SRM constitutes a sub-
set of the GRM. Therefore it is possible to compare the
performance for the GRM with that for the SRM
(Here the real memory scheduling in the SRM is assumed
to be the same as the one in the GRM, consequently
the SRM compared is not precisely the same as the
OS/VS2 Release 2 SRM.). As for CPU scheduling in
the SRM, it is assumed that the priorities of batch

190

Channel

180 Disk Disk
-8589 1-8589
6 M Bytos | Channel
terminal #1
H-9415

Fig. 3 The hardware configuration used in the experiment.

transactions are determined by the dynamic dispatching
control [6], while those of terminal-initiated transactions
are constant. The constant priority of terminal-initiated
transactions is specified to be higher than any of the
batch transaction’s priority, in order to avoid the degrada-
tion of the terminal-initiated transaction’s response.

The measurement was composed of two parts. The
part I concerns the response of the terminal-initiated
interactive transactions and the part II concerns the
service distribution among batch transactions. Both
were carried out on the M-180 system with 2 terminals
(See Fig. 3). The real memory capacity can be extended
up to 6 M Bytes which yields completely undercommitted
real memory environment; i.e., the environment where
the real memory is mostly idle.

(1) The Measurement Part I

The two terminals were always active throughout
this measurement. The terminal #1 initiated short
interactive transactions by “EDIT” command with
think time interval of about 20 sec. On the other hand,
the terminal #2 initiated a long executive transaction;
i.e., the compilation & execution of FORTRAN job of
which the execution phase requires 10 sec CPU execu-
tion without any I/O operations. This transaction was
repeatedly initiated by the terminal #2 until the end of
the measurement.

In addition to these terminal-initiated transactions, 2
batch transactions were processed concurrently. They
are both the compilation & execution of FORTRAN
job with program size of 250 K Bytes.

The specified service objective functions are shown in
Fig. 4. Here R represents the resource service count of a
transaction. The service objective functions in Fig. 4
are considered standard, where preference is given to
“short” rather than ‘“long” transactions, to terminal-
initiated rather than batch transactions.

The histogram of short interactive transaction’s
response time is depicted in Fig. 5, which was observed
during the 480 sec measurement interval.

For the GRM, the dispatching priority of a “long”
transaction initiated by the terminal #2 was modified
based on eq. (10), as it received CPU service. On the
other hand, it was kept constant for the SRM, making
this difference. To modify its priority by the dynamic
dispatching control, however, never solve the lackness
of service distribution control for the SRM. This is

T. NisHIGAKI, C. IKEDA, K. OumacH and K. NoGucHI

For Batch Transactions
0 SR < 20000 : g
20000 § R A

For Terminal-initiated
Transactions

0SSR < 1001 g

{ 200 < R < 2000 : g,

2000 < R r g

600 -

3

400

Resource Service Rate

i
20 40 60 80 100 120

Workload
Level

Fig. 4 The service objective functions specified in the Measure-
ment Part I

20b Mean + 1.08 sec
GRY
Standard Deviation: 0.36 sec

Frequency (/480 sec)
5

Mean 3.9 sec.
6r SRM {
Standard Deviation: 3.46 sec

n P .
12 34 s 6 7 8 9 10 11 12 13 soc

Response Time

Fig. 5 Performance comparison of the two schedulers with
respect to the responsiveness of interactive transactions
initiated by terminal #1.

because the dynamic dispatching control aims only at
the increase in throughput and might cause serious
imbalance in service distribution.

(2) The Measurement Part 11

In this measurement, no transactions were initiated
by the terminals and only 6 uniform batch transactions
were processed in parallel. Any of them is the execution
of the FORTRAN job which requests I/O operations
at about every 30 K steps and real memory of 25K
Bytes each. We divided these 6 transactions into two
groups. The three of them (#1~ #3) were associated
with the service objective function g,, and the rest of
them with g, (See Fig. 6). The former'group should be
supplied with more resource service than the latter,
and the accuracy of the service distribution control is
reflected by the standard deviation of NWL.

The change in service distribution controllability for
the GRM as a function of weight f,/a, is depicted in
Fig. 7 (Here, weight f,/a, was fixed at 1.0). Note that
the dynamic dispatching control [6] corresponds to the
case f,/a,=0, where preference is always given to I/O
bound transactions (Since all transactions were uniform
in this measurement, they were given the same dispatch-

An Experiment on the General Resources Manager in Multiprogrammed Computer Systems 191

Por Batch Tranasction #1~ #3

(oSnxgl

Por Batch Transaction #4 ~ #6

{o0SR: g

3

Resource Service Rate

2 . n Workload
20 40 60 80 100 120 Level

Fig. 6 The service objective functions specified in the Measure-
ment Part I1.

x103

25 =u.

1200

20} 1000
l] Total Throughput (/480 see) 2
\ /3 §
\ - 800 §
o 1sH 3
° ' g
§ 1 600 5
¥ 1ol | Standard Deviation of wWL :
g \ 8
= \é o

\

400
X I
@

\
5r \\
N
‘\ T 200
>
X
_____ ——
Oy N

Rate of weights B_/a
& »/%p

Fig. 7 Effect of the GRM performance control on service dis-
tribution/throughput.

ing priority.). The standard deviation of NWL indicates
that the increase in f,/a, improves service distribution
controllability. On the other hand, the insignificant
degradation in throughput (=total resource service
amount supplied to transactions) was caused by the
uniformity of the transactions.

In a general way, the increase in f,/a, is likely to
degrade throughput; especially in such a case as high
service objective functions are specified for CPU bound
transactions and vice versa for I/O bound transactions.
Apparently no resource scheduler can always achieve
two potentially conflicting performance objectives,
response (service distribution) and throughput. There-
fore a resource scheduler should be judged by the degree
how it can control performance (response/throughput),
rather than performance itself.

4.2 Simulations

There can be many active terminals in actual cases
and the change in working-set size causes overcommitted
as well as under-committed real memory environments.
Supplementary simulations were carried out to study
performance for the GRM in those environments.

The simulated hardware configuration assumed 40
active terminals and 1.6 M Bytes real memory capacity.
Each of 40 terminals was assumed to initiate either
Interactive (I)-type transactions or Executive (E)-type
transactions at every 20 sec [8] think time interval. To
make various real memory environments, we simulated
8 batch transactions together with terminal-initiated
transactions. Their working-set sizes w changed from
160 K Bytes to 240 K Bytes, thereby making under-
committed (when w=160 K Bytes) and overcommitted
(when w=240 K Bytes) real memory environments.
Half of them were CPU bound and the rest were I/O
bound, and requested I/O operation at every 100 K
steps and 10 K steps respectively. The E-type transac-
tions were assumed to have the same characteristics as
CPU bound batch transactions. As for the I-type trans-
actions, the execution requirement was set at 100 K
steps [7] with working-set size of 80 K Bytes [7}. The
specified service objective functions in the simulations
were standard ones like Fig. 4.

The responsiveness of the I-type transaction is depicted
in Fig. 8, which was observed in the simulated interval
of 300 sec. (Here, response time denotes internal process-
ing time; i.e., it does not include the message’s line
transmission delay.). It is indicated in Fig. 8 that the
responsiveness for the GRM is quite stable although
that for the SRM degrades as the number of such
terminals increases as initiate E-type transactions.

The difference in service distribution controllability
between the GRM and the SRM is also shown in the
standard deviation of NWL in Fig. 9. This figure indicates
that the improvements in service distribution control
is not necessarily accompanied with the degradation in
throughput.

In summary, the difference in performance control

J.Or,

—— Mean

—— —: Standard Deviatian

SRM,
w = 160 KB

2.0 [

Reaponse Time

1.0 [

- GRM,
} w = 160 KB

- GRM,
Pk T
Fa ~- ™ = 240 KB
o

10 20 30 L3

Rate of Terminals initiating
E-type Transactions

Fig. 8 Simulated effect of terminal characteristics on the I-type
transactions’ responsiveness.

192

+ Total Throughput (/300 sec) x10

au.
——— 1 Standard Deviation of MWL
-{ 650
aRM,
w = 160 KB
SRM,
w'= 160 KB q ¢o°
35 [GRM,
w = 240 KB
h\‘\' H
S, w = 240 KB 4 550 g
-
30+ VRS H
. ’ H-w 7
s / SRM, w = 160 KB $
k] , . {500 o
k] // -5]
380 ’ - onm 240 KB :
T ’ PO b v T 240 4
P -
> 4 ’7 x~o %
,/’//A GRM, w = 160 kB | 450 1
L 7, - S~
P S
20 o« e
L GRM, w = 240 KB
400
15|
L L L
10 20 30 b 4

Rate of Terminals initiating
E~type Transactions

Fig.9 Simulated effect of terminal characteristics on service
distribution/throughput.

T. NisHiGAKI], C. IkeDA, K. OHMAcHI and K. NoGgucHI

between the GRM and the SRM decreases in an over-
committed real memory environments, but it is still
significant.

5. Conclusion

The General Resources Manager (GRM) gives an
integrated resource scheduling scheme. The GRM
recognizes the bottleneck resource in performance, and
adjusts its allocation priorities. This enables the GRM
to improve both response and throughput in diverse
environments. The GRM conceptually includes the
OS/VS2 Release 2 System Resources Manager [1] which
uses only swapping, the dynamic dispatching control
[6], and the traditional time-slicing control.

Measurements on the empirical implementation and
supplementary simulations have revealed satisfactory
performance controllability for the GRM. This is
especially true, when compared with the scheduling
algorithm which uses only swapping.

Acknowledgements

The author would like to thank Dr. Setsuo Ohsuga
of the University of Tokyo, for his helpful discussions
and comments.

(Received October 12, 1978)

