Comments on Monitors and Path-Expressions

AKINORI YONEZAWA*

Two programming language constructs, monitors and path-expressions, which facilitate the implementation
of multi-programming systems are compared and critically reviewed in the light of the programming methodolo-
gies which support quality software construction. The background and motivations of the research on the
contructs are discussed. Comparison and arguments are made using familiar examples of synchronization

primitives and synchronization problems.

1. Introduction

Recently two important proposals have been made
on the concepts which support structured multiprogram-
ming. One proposal is the “monitor” concept which
was first introduced by P. B. Hansen [2] and later de-
veloped by C. A. R. Hoare [11]. The other proposal
is the ‘‘path-expressions” which was introduced by
Campbell and Habermann [3]. This paper focuses on
the following two papers:

1) C. A. R. Hoare “Monitors: An operating System
Structuring Concept” CACM Vol. 17 No. 10, October
1974, and

2) N. Habermann
Carnegie-Mellon University,
1975.

“Path-expressions” Report,
Pittsburgh, Pa., June

and an attempt will be made to review these concepts,
especially with respect to the question of how they
contribute to the area of specification and implementa-
tion of parallel programs.

Since these two concepts can be viewed, in my opinion,
as outgrowths of coupling of two research areas which
have been separately studied, in the following two
sections such two researches will be briefly surveyed
as a background for our discussion.

2. Background I (low level synchronization primitives)

The whole motivation of introducing concepts such
as monitors and path-expressions is to enhance the
reliability and understandability of parallel programs
by providing suitable mechanisms for parallelism and
synchronization in high level programming languages.
Before these two concepts were introduced in the
literature, various primitive mechanisms for the syn-
chronization of concurrently running processes had
been proposed. The most well known among them is
the P/V operation on semaphores proposed by E. Dijkstra
[6] and used in the implementation of THE operating
system [6]. Similar concepts such as wait/signal and other
extentions of semaphores were also proposed. Although

*Department of Information Science, Tokyo Institute of Tech-
nology.

Journal of Information Processing, Vol. 1, No. 4, 1979

semaphores and other concepts are powerful tools
for efficiently implementing low level details of synchroni-
zation problems, programmers always have to deal
with too much details. Furthermore, no appropriate
language constructs which encourage the well-structured
use of P/V operations are provided. Therefore it is
often quite difficult to understand or debug or prove
the correctness of programs in which P/V operations
are scattered. In Appendix I, a solution of the readers/
writers problem (write priority) of Courtois, Heymans
and Parnas [4] which is implemented using semaphores
is given. In this implementation five semaphores are
used for different purposes. The complexities of this
solution need to be reduced by using more structured
high level mechanisms for synchronization.

P. B. Hansen’s idea [1] about methods of structuring
the implementation of synchronization problems is
to associate data shared by concurrent processes ex-
plicitly with operations defined on the shared data.
He gave language constructs which realized this idea
in PASCAL-like languages. For the purpose of com-
parison with more advanced concepts such as “‘monitors”
and “path expressions”, the language constructs are
explained below. A shared variable of type T is defined
as follows.

var v: shared T

The shared variable v can be referred to and modified
by concurrent processes only inside the following con-
struct, called a critical region:

region v do {statements)

Critical regions referring to the same shared variable
cannot be executed by more than one process at a time.
When concurrent processes cooperate, they must
wait until certain conditions on the shared variable
are satisfied by other processes. For this purpose, a
synchronization primitive:

await B

is used inside critical regions. If the condition B is not
satisfied when a process evaluates await B in a critical
region of a shared variable, the process is put to sleep
and other concurrent processes are allowed to execute
critical regions of the same shared variable. When



Comments on Monitors and Path-Expressions

B is satisfied by a completion of other critical sections
by other processes, the dormant process is awakened
and the execution of the subsequent statements is
resumed.

By these constructs, a shared variable and operations
on it are explicitly associated. This idea is closely related
to the idea of data abstraction which will be discussed
in the next section.

3. Background II (data abstraction)

In the context of structured programming, the im-
portance of ‘‘abstraction” (namely, a process which
extracts relevant information and supresses irrelevant
detailed information in programming activities) has
been emphasized [7, 12]. Besides the functional abstrac-
tion which has been realized as procedures in con-
ventional programming languages, the concept of data
abstraction was introduced by B. Liskov [13]. The
idea of data abstraction is that an abstract data type
defines a class of abstract objects which is completely
characterized by the operations available on objects of
that class. In short, an abstract data type is defined by
operations which can be applied to it.

This idea was partially realized in the class concept
of SIMULA-67[5] designed as a simulation language.
Then, to realize this idea throughly, the cluster concept
of the structured programming language, CLU [14]
was designed so that programmers could easily realize
their own data abstraction in the language. Furthermore
the semantics of CLU guarantees the integrity of a
created object of the abstract data type defined by pro-
grammers.

However, SIMULA-67 and CLU are initially not
provided with any synchronization mechanisms and
no parallelism is allowed in these languages. But when
parallelism is taken into account, a certain abstract
data type such as a message buffer needs to be treated
more carefully. Depositing and removing a message
are operations available on message buffers. But these
operations are usually performed by concurrently run-
ning processes. To insure the proper use of a message
buffer, an appropriate synchronization among those
operations has to be made. Therefore, in order to
characterize certain abstract data types (i.e. message
buffers, stacks etc.), it is not sufficient to give all opera-
tions available on them when parallelism is involved.
To characterize such data types completely, Hansen’s
idea, described in the previous section, that all opera-
tions on a data object shared by concurrent process
should be explicitly associated with that data object,
can be easily combined with the idea of data abstraction
and a more complete idea of data abstraction which
allows operations by concurrent processes becomes
possible. The first attempt to realize this idea as language
constructs is the monitor concept proposed by P. B.
Hansen [2] and C. A. R. Hoare [11].

181

4. Monitors

A monitor defines a shared data structure and all
the operations which can be applied to it. These
operations are called monitor procedures. A monitor
also defines an initialization of its shared data structure
which may consist of more than one data object of
various data types. To declare a monitor, Hoare used
the following notations which were quite similar to
the class declaration of SIMULA-67.

{class}* {monitor-name : monitor
begin...declarations of data local to the monitor...
procedure { procedure-name)({ formal-parameters))

begin...declarations of data local to the ptocedure...
{procedure-body) end

...declarations of other monitor procedures...

...initialization of data local to the monitor...
end
Fig. 1

Any process can attempt to call monitor procedures at
any time. To express a monitor procedure call, the moni-
tor name is always referred to in the following form.

monitor-name.procedure-name ({actual-parameters))

The most important feature of a monitor which dis-
tinguishes itself from the ordinary class concept is
that only one process at a time can execute a monitor
procedure and any subsequent executions of monitor
procedures defined in the same monitor must be held
up until the previous execution of the monitor procedure
has been completed.

A new type of variables called “conditions variables”
can be declared local to a monitor. When a process
encounters the statement:

a-condvariable.wait

in a monitor procedure, it must temporarily suspend
its execution and wait in a queue associated with the
a-condvariable without preventing other processes
from executing monitor procedures. When a process
executes the statement:

a-condvariable.signal

in a monitor procedure, a process waiting in the first
place in the queue associated with a-condvariable will
be reactivated. It is often necessary in writing monitor
procedures to know whether or not the queue associated
with a-condvariable is empty. To do so, the following
boolean expression can be used.

a-condvariable.queue

This expression evaluates ‘“‘true” if the queue is not
empty.

In the following example of a message buffer, all
the features of monitors explained so far (except the

*When more than one identical monitor is necessary, the monitor
is defined as a class.



182

message-buffer: monitor
begin
buffer: message;
count: 0...1;
empty, full: condition;
proc deposit (m: message)
begin
if count=1 then full.wait;
buffer:=m;
count:=1;
empty.signal
end
proc remove (result m: message)
begin
if count=0 then empty.wait;
m :=buffer;
count:=0;
full.signal;
end
count:=0;
end
Fig. 2

last one) are used. The variable buffer is of message
type. An actual deposit (i.e. buffer:=m in the procedure
deposit) must be performed after the previous message
is removed and an actual removal of message (i.e. m:=
buffer in the procedure remove) must be performed
after a new message is deposited. This synchronization
is made by the wait/signal operations on two condition
variables, empty and full.

So far queues associated with condition variables
have been assumed to observe the first-in first-out
(FIFO) discipline. To allow more flexible scheduling
of waiting processes, ‘“‘scheduled wait” is introduced.
When a process is put in a queue associated with a
condition variable, a certain number p which indicates
the priority is assigned to the process as a parameter
of the wait operation:

a-condvariable.wait(p).

When this a-condvariable is signalled, a process with
the lowest number among processes in the associated
queue is awakened and resumes its execution of the
subsequent statements.

The second attempt to extend the idea of data ab-
straction so that concurrent processes are allowed to
operate on shared data is the “path expressions” which
will be presented in the next section.

5. Path Expressions

As remarked before, in defining a data type it is not
sufficient only to give all available operations on that
data type if parallelism is involved. The whole idea of
“path expressions” is to provide in the definition of a
data type a separate specification of how the operations
(procedures) on the data type should be used.

Suppose p, g and r are procedures associated with a
certain data type. The path expression:

path p; g end

A. YONEZAWA

specifies that p must be always performed before g.
If both ¢ and r should not be performed at a time (i.e.
mutual exclusion), the path expression:

path g+r end

specifies this requirement. The symbol + means exclusive
selection. The pair of key words path . . . end represents
Kleene’s star operation. Also * can be used as the star
operation in path expressions. For example, the follow-
ing path expression is legitimate.

path p; (g; r)* end

The class of path expressions introduced so far can be
viewed as the whole class of the regular expression
constructed with two connecting operations; and +.

The following code is a path expression version of
message buffers.

type message-buffer;
begin
var buffer =message;
path deposit; remove end;
let m=ref message in
op message-buffer.deposit (m);
begin buffer—m end;
op message-buffer.remove (m);
begin m—buffer end
end

Fig. 3

Besides expressions for simple ordering of execution
of operations, logical conditions on which operations
can be performed are specified by “conditional elements”
in a path expressions. A conditional element is given
by the following form:

[¢cond.1): {elem.1), ..
{elem.n+1}]

., {cond.n): {elem.n),

The left-most element which satisfies its conditions
(if none of conditions are satisfied, then elem.n+1)
represents the element of the above conditional form.
There are basicly two restrictions on the condtions.
First, conditions must be boolean and operands of
the conditions must be either constant or data objects
local to the type definition in which the path expression
is defined. Second, all operations which change the
operands of conditions must occur in the path expression
in which the conditions appear. A path expression
which defines stacks is a simple example of the condi-
tional path expressions.

path [length=0: push, length=max: pop, push + pop]
end

The above path expression specifies that if the length
of a stack is zero, only the push operation can be per-
formed and if the stack is already of maximum length,
only the pop operation can be performed and otherwise
push and pop operations are mutually exclusive.

There are three more constructs needed to be ex-



Comments on Monitors and Path-Expressions

plained for the subsequent discussion. The first one is
the specification of simple priority between two opera-
tions, say p and ¢ which are mutually exclusive. Suppose
the executions of both p and ¢ have been already re-
quested and are suspended until some preceding opera-
tion has been completed. The expression:

p>q

indicates that the execution of p will be started, when
the preceding operation is completed. The second one
is the multiple path expression. It is allowed to define
more than one path expression in a type definition.
For example, a multiple path expression:

path p; r end
path g; r end

specifies the order of the execution of p and r, and ¢
and r, but does not specify the order between p and
g. Therefore the above multiple expression can be used
to express potential parallelism between p and g. The
third one is the connected path expression. It is generally
assumed that only one procedure among others which
appear in a single path expression can be performed
at a time. From this assumption, the following path
expression made by connecting the above two path
expressions:

pathp;r & q; r end

imposes an additional constraint that p and g cannot
be executed simultaneously (or concurrently) though
the order between p and ¢ are unspecified.

6. What is the Difference?

Our discussion of the two synchronization concepts
will develop mainly by comparing them.

As long as no parallelism is involved, both concepts
are based on the same thesis of ‘“‘data abstraction”
that a data type should be defined by operations available
on that data type. As noted before, when parallelism
is involved, the synchronization of operations on a
data type must be specified in the definition of that
data type in an appropriate way. In monitors, the
synchronization of operations on shared data is realized
(or specified) by two different mechanisms:

1) mutual exclusion among monitor procedures, and
2) wait/signal operations on condition variables
inside monitor procedures.

On the other hand, path expressions directly and ex-
ternally specifies the synchronization of procedures
defined in the data type definition. In the definition
of the message buffer type in Fig. 3, a very simple path
expression:

path deposit; remove end

was sufficient for the specification of synchronization.
However, the same type definition by a monitor in

183

Fig. 2 needs to introduce two conditional variables
and programmers have to take care of when and on
what conditions the wait/signal operations must be per-
formed.

Since path expressions require programmers only
to gives external specification of how operations on
shared data should be used, it seems to encourage
programmers to write more well-structured programs
than monitors do. But the following definition of sema-
phores shows that path expressions could be complicated
even for a simple data type. The procedures prefixed
by proc cannot be called by users directly. Users are
allowed to call V-op and P-op only.

type semaphore;
begin
var s=integer (1);
path [s>0: V-op+(P-request; P-granted),
s=0: V-op+P-request,
5<0: (V-op; P-granted)+ P-request] end;
op semaphore. V-op;
begin s:=s5+1 end
op semaphore. P-op;
begin P-request; P-granted end
proc P-request;
begin s:=5—1 end
proc P-granted;
begin (null statement) end
end

Fig. 4

The complication of this definition results from the
decomposition of the P operation into two internal
procedures P-request and P-granted (Note that P-op
does not appear in the path expression.). Such decom-
position is necessary in order to suspend the completion
of the P-operation if the counter s is negative after
decreasing s.

In contrast to the definition above, the following
definition of semaphores by a monitor is simple.

semaphore: monitor
begin
s: integer;
busy: condition;
proc V-op;
begin 5:=s5+1; if s<0 then busy. signal end
proc P-op;
begin 5:=s5—1; if s<<0 then busy. wait end
s:=1
end
Fig. §

7. Readers/Writers Problems (Which is More Struc-
tured?)

To point out and discuss various problems in monitors
and path expressions, we will look at solutions of the
readers/writers problem [4]. In Fig. 6 Hoare’s solution
[11] is given. A major difficulty with this solution, which
originates from the whole concept of monitors, is that
there are no specifications of in what order those four



184

class readers-writers-scheduler : monitor
begin readcount: integer;
busy: Boolean;
Oktoread, Oktowrite: condition;
proc startread;
begin if busy V Oktowrite.queue then Oktoread.wait;
readcount :=readcount+1;
Oktoread.signal
end

proc endread;
begin readcount :=readcount—1;
if roadcount =0 then Oktowrite.signal
end
proc startwrite;
begin if readcount#0 V busy then Oktowrite.wait;
busy:=true
end
proc endwrite;
begin busy:=false;
if Oktoread.queue then Oktoread.signal

else Oktowrite.signal
end

readcount:=0;
busy:=false;
end

Fig. 6

monitor procedures should be used. Suppose that
“endread” is inadvertently or deliberately called before
“startread” is ever called. Then readcount becomes
negative and it will not indicate the number of readers
in the data base any more, which completely ruin this
solution. This serious shortcoming of the solution
(or, more generally, solutions of various problems by
monitors) also makes the correctness proof of the solu-
tion tremendously difficult. The whole text of programs
which might have calls of monitor procedures has to
be checked whether or not startread is always called
before endread and in the worst case such a check can-
not be carried out statically. Thus a plan of finding
certain invariant relations (holding among objects local
to a data type definition), which is a standard technique
for the correctness proof of data representation [10],
cannot be carried out. In Appendix II, one way of forcing
users to call these monitor procedures in a proper
order is proposed. The idea is to define an ordinary
class readers-writers-data-base which takes an argu-
ment of data-base type and inside this class an instance
of the above monitor (in Fig. 6), rws, is declared. And
inside procedures READ and WRITE which are defined
in the class, those monitor procedures (startread,
endread, etc.) are called in a proper order. It seems
impossible to realize the proper use of monitor pro-
cedures without any help of additional mechanisms such
as the class or clusters. In this respect, path expressions
allow programmers to write more well-structured
programs than monitors do. Let us look at Habermann’s
solution of a readers/writers problem written in path
expressions (Fig. 7). In this solution*, the semantics of the

*Note that the priority assignment among readers and writers
in this solution differs from the one in Hoare’s solution in Fig. 6.

A. YoNEZAWA

type readers-writers-data-base (db=data-base);

begin
var r=integer (0);
path [r=0: actual-writing, rquit]+rinit end
path rinit < (write-attempt; actual-writing) end
op read;
begin rinit; {...actual reading of db...»; rquit end
op write;

begin write-attempt; actual-writing end
proc rinit; begin r:=r+1 end
proc rquit; begin r:=r—1 end
proc write-attempt; begin {null statement) end
proc actual-writing; begin {...actual writing of db...) end

Fig. 7

underlying language guarantees that only procedures
preceded by op can be called by users. Other procedures
preceded by proc cannot be called directly. So read
and write are only procedures which users can call. The
code of read guarantees that rinit is always called before
rquit. However, as in the case of semaphores in Fig. 4,
to suspend a process at a proper point in the writing
operation and also to ensure the write request to be
granted, the write operation in this implementation
needs to be artificially divided into two procedures
write-attempt and actual-writing.

8. Priority

In the solution of the readers/writers problem by path
expressions (in Fig. 7), to assign priority to writers
when both rint and write-attempt have been waiting to
be executed, the following path expression was used.

path rinit { (write-attempt; actual-writing) end

But in terms of priority, the solution by the path ex-
pressions can be considered much more coarse than the
monitor solution in Fig. 6. In fact, the monitor solution
specifies sophisticated priority:

1) at the end of a writing operation if readers are
waiting, a reader is granted and otherwise a writer is
granted (if any) and

2) once a reader is granted, all currently waiting
readers will be granted while waiting writers still have
to remain in the queue.

To specify such priority by path expressions, some
structural changes of the type definition such as de-
composition of procedures and complicated conditional
path expressions will be needed. It seems that the way
monitors specify priority by wait/signal operations is
easier for programmers to understand and implement,
although they have to deal with wait/signal operations
even when sophisticated priority specifications are
unnecessary.

To complete our discussion on priority, it should be
pointed out that implementations by path expressions
have difficulties in expressing the first-in first-out schedul-
ing discipline while queues associated with condition



Comments on Monitors and Path-Expressions

variables in monitors naturally incorporate the FIFO
mechanism.

9. Starvation

Both monitors and path expressions lack no particular
mechanisms which might prevent or reduce the possibility
of “starvation”. Only thing we could argue is the
easiness of proofs of no starvation. Since wait/signal
operations are usually scattered in monitor procedures
while path expressions externally specifies the order of
execution of procedures, it could be said that path ex-
pressions are easier than monitors to show the starva-
tion freeness. However, as discussed in the previous
section, since sophisticated priority specifications would
require complicated path expressions, it seems hard
to judge which is better with respect to the starvation
freeness.

10. Deadlock

Obviously a call of a monitor procedure within monitor
procedures which are defined in the same monitor
causes ‘“‘deadlock”. This situation is easily detected at
compile time. But it is usually quite difficult (theo-
rectically undecidable*, in general cases) at compile
time to detect deadlock when wait/signal operations
are scattered in monitor procedures or when monitor
procedures are not specified as to how they are called
in programs. The degree of difficulty in detecting dead-
locks of implementations by monitors is almost the
same as that of implementations by semaphores.

In the case of path expressions, a simple example
of deadlock such as one caused by the multiple path
expression:

path f; p; q end
path g; g; p end

can be easily detected at compile time, but the following
example of the multiple path expression:

path f; g end
path p; g end

can cause deadlock when a process calls g after p and
other process attempts to call g after f. It should be
noted that this type of deadlock cannot be generally
detected at compile time, because it is in general un-
decidable to determine whether or not particular calling
sequences take place.

Both in the monitor and the path expression cases,
the detection of deadlock at compile time is difficult
except the ones reducible to the obvious situations
mentioned above. Though problems of the deadlock
detection at compile time tend to face the *“‘undecidability

*The problem can be reduced to the halting problem of monitor
procedures because we must check whether or not particular wait/
signal operations in the program text are ever executed and such
operations could be placed at the end of the monitor procedures.

185

barrier”, it would be a fruitful research area to find
decidable patterns of program execution by restricting
the class of programs.

11. Conclusion

In extending the idea of “‘data abstraction” to parallel
programs, the concepts of monitors and path expres-
sions have been introduced. In monitors, the synchroni-
zation mechanism is realized by the built-in property
of mutual exclusion between monitor procedures and
wait/signal operations on condition variables. Since
in the monitor itself no language constructs which directly
specify the legitimate order of execution of monitor
procedures are provided, it is still subject to misuses
of its monitor procedures even if a monitor itself is
correctly defined. Therefore the correctness proof of
implementations by monitors are often quite difficult
to carry out. Furthermore, since the mechanism of
wait/signal operations is almost as primitive as that
of P/V operations, the detections of deadlock and starva-
tion are also quite difficult. As shown in Appendix II,
the idea of using local monitors inside the class or
cluster definition will considerably reduce the difficulties
with monitors. C. Hewitt’s idea of “serializers” [9]
can be considered as one realization of this idea in the
context of the actor system.

Path expressions externally specify the legitimate
order of the executions of procedures declared in a
data type definition. Therefore implementations of
synchronization problems by path expressiens can be
much more well-structured than those by monitors.
But on the other hand, because of lack of explicit mecha-
nisms for primitive synchronization (such as wait/
signal operations), it is often the case that procedures
need to be decomposed into smaller unnatural pro-
cedures to attain the same effect of wait/signal opera-
tions. And sophisticated priority specifications require
quite complicated path expressions even if the built-in
expressions > and < are used. Although the path
expression itself is not a specification language for
synchronization problems, the idea of completely
external specifications of the execution order of pro-
cedures will greatly encourage the study of specification
techniques of parallel programs (For example, see
[15] and [16].).

However, it remains to be seen whether or not com-
plicated path expressions in which conditionals, priority
expressions and unnatural decompositions appear can
be easily written and understood by programmers.

Acknowledgements

The author would like to thank C. Hewitt and B.
Liskov who suggested him to write an early version of
this paper. Special thanks are due to E. Wada who
corrected a mistake in the author’s original implementa-
tion of semaphores by a monitor. Thanks are also due



186

to I. Kimura who encouraged the author to write this
paper and helped him in receiving the comments of
S. Andler.

References

1. BriNcH-HANsEN, P. Structured Multiprogramming. CACM,
14, 10, (October, 1972).

2. BRINCH-HANSEN, P. Operating System Principles, Englewood
Cliff. N.J., 1973.

3. CampBeLL, R. H. AND HABERMANN, A. N. The Specification of
Processes Synchronization by Path Expressions, Lecture Notes in
Computer Science, 16, Springer-Verlag, 1974.

4. CourTos, P, J., HEYMANS, S. F. AND PARNAs, D. L. Concurrent
Control with ‘Readers’ and ‘Writers’, CACM, 14, 10, (October,
1971).

5. DauL, O. J, et al. Simula 67 Common Base Language.
Norwegian Computing Center, Oslo, (May, 1968).

6. DuKSTRA, E. W, The Structure of the ‘THE’-multiprogramming
system, CACM, 18, 5, (May, 1968).

7. DuksTrA, E. W. Note on Structured Programming, Technische
Hogeschool Eindhoven, The Netherland, (1969).

8. HaBerMANN, A. N. Path Expressions, Computer Science
Department Carnegie-Mellon University, Pittsburgh, Pa., (June,
1975).

9. Hewirrr, C. Protection and Synchronization in Actor System,
ACM SIGCOMM-SIGOPS Interface Workshop on Interprocess
Communication. March 24-25, 1975, Santa Monica, Calif. See also,
ATKINSON, R. AND HEwrTT, C. Synchronization in Actor Systems,
SIGPLAN-SIGACT Symp. on Principles of Prog. Lang., Los
Angeles, (January, 1977).

10. HoARg, C. A. R. Proof of Correctness of Data Representa-
tions, Acta Informatica, 1, (1972), 271-281.

11. Hoarg, C. A. R. Monitors: An Operating System Structuring
Concept. CACM, 17, 10, (October, 1974).

12. Liskov, B. H. A Design Methodology for Reliable Software
Systems, Proc. of the AFIPS., 41, (1972).

13. Liskov, B. H. AND ZiLLEs, S. Programming with Abstract
Data Types, SIGPLAN Notice, (April, 1974), 50-59.

14. Liskov, B. H. A Note on CLU, Computation Structure Group
Memo 112, Laboratory for Computer Science MIT, (November,
1974).

15. YONEzAwWA, A. Specification and Verification Techniques
for Parallel Programs Based on Message Passing Semantics, (Ph.D.
Thesis) Technical Report 191 Laboratory for Computer Science,
MIT, (December, 1977).

16. YONEzAwA, A. A Specification Technique for Abstract Data
Types with Parallelism, Proc. of Int. Symp. on Mathematical Studies
of Information Processing, Kyoto, (August, 1978). Also, to appear
in Lecture Notes in Computer Science (E. K. Blum and T. Takasu
eds.), Springer-Verlag, (1979).

Appendix I

A Solution to the Readers/Writers Problem (write
priority)

integer readcount, writecount; (initial value=0)
semaphore mutexl, mutex2, mutex3, w, r; (initial
value=1)
(reader)
P(mutex3);
P(r);
P(mutex1);
readcount :=readcount+1;

A. YONEZAWA

if readcount:=1 then P(w);
V(mutexl);
V(n);
V(mutex3),;

{actual reading)

P(mutex!);
readcount:=readcount—1;
if readcount:=0 then V(w);
V(mutex1);

(writers)
P(mutex2);
writecount :=writecount + 1;
if writecount:=1 then P(r);
V(mutex2);
P(w);

{actual writing)

V(w);
P(mutex2);
writecount :=writecount—1;
if writecount:=0 then V(r);
V(mutex?2);

Appendix 1T

Implementation of the Scheduled Data Base by the
Class Concept

class readers-writers-data-base(db: data-base);
comments this class takes a data-base as an argu-
ment;
begin
rws: readers-writers-scheduler;
comments an instance of monitor was declared;
proc READ;
begin
rws.startread; comments monitor call;
{...actual reading of db...»
rws.endread; comments monitor call;
end
proc WRITE;
begin
rws.startwrite; comments monitor call;
{...actual writing of db...)
rws.endwrite; comments monitor call;
end
end
(Received June 12, 1978; revised November 17, 1978)



