Short Note

A Transportation of Multiphase Compiler

SATORU KAawaAr* and KivosHI ISHIHATA*

Some consideration on multiphase compilers aroused during a project of compiler transportation is pre-
sented. The concepts of phase, pass, and program separation are examined from the viewpoint of practical
transportation. An implementation of Algol 68 compiler is described in order to clarify the actual process of
transportation. Some other points which affected the project are also shown.

1. Phase and Pass of Compilers

Compilers of programming languages usually have
several phases during translation. The source text of a
program is converted step by step towards the final form.
The process of the elementary conversion can be defined
as a single phase of the compiler. It is worth noting that
phase is a different concept from pass which is generally
used for the characterization of compilers. A one-pass
compiler need not be a single phase one. The usual cases
are that more than one phase is “interleaved” with
each other within a particular pass of compiling. The
parts of the compiler corresponding to these phases
work cooperatively like the elements of pipe-line control
in the architecture of large scale computers. That inter-
leaving is intended for the minimization of the amount of
information which is to be stored in main or external
storage for the purpose of communication between the
phases.

Typical examples of phases are; lexical analysis,
syntax analysis, and code generation. In the compilers
for carefully designed languages, these three (and prob-
ably some other) phases can be interleaved into a single
pass, forming a one-pass compiler. For some other
languages such as Algol 68, on the other hand, it is im-
practical to get all the phases interleaved into one
mainly because the information obtained in a particular
phase is required, as a whole, to commence its successor
phase.

Phase separation, on the other hand, has its own
advantage against the interleaving described above.
Though the required amount of and the number of
access to the main and/or external storage would in-
crease when the phases are separated, that separation
would also increase the independency of phases. The
subparts of the compiler corresponding to the phases
might be programmed almost independently of each
other, provided that the format of interface information
is completely predetermined. When the whole compiler
is to be modified, for example, because of the changing
of the specification of the language or of the working

*Department of Information Science, Faculty of Science, Uni-
versity of Tokyo, Tokyo 113, Japan.

Journal of Information Processing, Vol. 2, No. 3, 1979

environment under which the compiler works, the pro-
gram segments corresponding to only few phases must
be modified without any modification of other part of
the compiler.

A transportation of compiler from one installation to
another can be regarded as a task in which the changing
of working environment of the compiler must be properly
dealt with. If the phase of code generation is clearly
defined in the compiler, that phase is to be modified so
that the resultant code suits the new environment. Many
compilers written in its own language have been trans-
ported in this way. Usual transportation process is as
follows.

1) The part for code generation is replaced.

2) The modified compiler is compiled in the old en-
vironment by the old compiler.

3) The modified compiler is compiled in the old en-
vironment by the new (modified) compiler.

This process is illustrated in Fig. 1.

s@®r

modify .

s(s)a

S@P D
s(P)q—®
s(Q)Q

Fig.1 A Bootstrapping.
S: source code
P: machine code of P (original machine)
Q: machine code of Q (target machine)
U@W: a converter from U to W which works on V-
processor.

M—¢ : aconversion by M

2. ALGOL 68C and Its Transportation

ALGOL 68C is a dialect of Algol 68 developed at the
University of Cambridge, England. The implementa-
tion for the processor of ALGOL 68C has two char-
acteristic features; the two step compilation using an
intermediate code, and the separate compilation facility.

The intermediate code is called ZCODE. It is gener-



144

ated by the first pass of the processor, named the com-
piler, and is used to generate final machine code by the
second pass, named the translator. The reason of em-
ploying ZCODE is multifold. First, a single ‘“compiler”
can be used commonly for several target machines
provided that the “translators” for these machines are
prepared. Note that the complexity of a “translator” can
be (and should be) much less than that of a “compiler”.
Second, local and global optimization of code can be
done more easily by this pass separation. For this pur-
pose, the user is allowed to specify some characteristics
of “ZCODE machine”, such as the size of unit storage
and the number and the usage of general registers,
when compiling programs. The final purpose of employ-
ing ZCODE is to make the processing system as portable
as possible. The following steps are expected to be
carried out for a transportation of the system.
1) The characteristics of ZCODE machine is determined
so that the difference in architecture between it and the
target machine becomes as small as possible.
2) The compiler is compiled by itself, using the specifi-
cation of ZCODE in 1), to obtain a ZCODE version of
itself.
3) A translator for the target machine is written on
the old machine.
4) The ZCODE version of the compiler is translated
by the new translator into the object code of the target
machine.
5) The new translator on the old machine is also com-
piled and translated in the same way as the compiler.
By the separate compilation facility of the implementa-
tion of ALGOL 68C, any program can be split into
pieces. The scheme of splitting is top-down manner, i.e.,
each piece of program except for the root is supposed to
fill a hole in its parent segment. Any unit in terms of
Algol 68 may be replaced by a hole which is called a
handle in ALGOL 68C. The resultant form of a split
program is a set of tree-structured program segments.
They are compiled in the order of root-first tree traversal.
A link edit program combines the compiled object
modules into one to make the program executable.

3. Transportation Making the Use of Loader-Level
Language

We had a plan to transport ALGOL 68C system from
Cambridge to our installation. The followings are the
points which had to be considered for the transportation.

As far as the code generated by the compiler (or more
precisely by the translator) is concerned, there is no
practical difference in the architecture and the set of
instruction between IBM370/165 on which ALGOL
68C system was developed at Cambridge, and HITAC
8700/8800 which is our target machine. It was planned,
therefore, to make the most of the translator on IBM,
called Z370, for the transportation. However, the process
was not straightforward because the input format of
our linkage editor is completely different from that of

S. Kawar and K. ISHIHATA

IBM’s. IBM’s is card image format and then can be
handled by the output facility of Algol 68, though
“binary characters” must be ‘“punched” on object
module files. On the other hand, our linkage editor
accepts only the files of special format for which it is
very difficult to prepare an interface with Algol 68 output
facility. It was, therefore, almost impossible to modify
Z370 so that it produced directly the object modules of
our machine.

Z370 has three phases; the input of ZCODE, the
creation of program on an internal buffer, and the output
of the program in linkage editor format. The whole text
of the translator is segmented correspondingly. Con-
sidering this phase structure of Z370, we decided not to
carry out the transportation using ZCODE (which was
expected to be used by the original designer) but rather
use a loader language as the tool for bootstrapping.
The separate compilation facility also played an im-
portant role because the interface information among
(subdivided) segments can also be handled within the
loader language.

The key of our transportation is to determine the
specification of the interface language, named pseudo-
loader code (PLC). PLC must be closely related to the
structure of our object module and, at the same time,
must be generated by Z370 with little modification. We
adopted the character representation of subroutine calls
with parameters as the format of PLC. The explicit
format is as follows.

Os, s, open the object module *“s,” in the file with
definition name “s,”. s, and s, are strings of
size less than or equal to 8.

put data x of length y. f is the flag for absolute/
relocatable.

Nsx create entry name ‘‘s” at location x.

Xsx ' create external reference from location x.
C close the object file.

Pxyf
‘SSQ,

An example of PLC is shown in Fig. 2.

Actual transportation process follows.
1) Replace the segment of Z370 corresponding to the
final phase by i) code generation main routine, and ii)
routines for output of pseudo-loader code (PLC).
2) Compile and translate (by Z370) the modified trans-
lator, named Z8800, on an IBM machine.
3) Compile and translate (by Z8800) both the compiler
and Z8800. We then obtain the PLC version of the
compiler and Z8800.
4) Make two routines on our machine one of which,
named OBJ, is a utility subroutine for creating object
modules and the other is the interpreter of PLC invoking
OBJ.
5) Using the routines described in 4), convert the com-
piler and Z8800 from PLC form into the object module
of our machine. Note that the compiler and Z8800 thus
converted consist of a number of object modules corre-
sponding to the original subdivision.
6) Link the objects of the compiler together.



A Transportation of Multiphase Compiler

O A680BICT PRINTSEG
P 18F 2 0

P 51430FFF 4 0
P 50C02108 4 0
P D203210C 4 0
P 52F04EF7 4 0
P 51E02180 4 0
P ODIF 2 O

P 98152004 4 0
P O7F1 2 O

P 0000 2 O

P 0001 2 O

P 03E0 2 O

P 0000000A 41
P 00000100 4 0
P 00000144 4 0
E PRINTTOP 0000
E SBRETURN 0018
X SSREADER 0028
X SSWRITER 002C
C

Fig. 2 Example of pseudo loader code.

7) Link the objects of Z8800 together, replacing the
PLC output module by OBJ.
This process is illustrated in Fig. 3.

Besides the programming of the modification of Z370

translator source code

compiler
source
code '

on H)

(compiler on H) (translator on H)

Fig.3 The Transportation Scheme.

: ALGOL68C

ZCODE

an internal code
subroutine call sequence
PLC, pseudo loader code
IBM machine code

IBM object code
HITAC machine code
HITAC object code

SmQ - mxeny

145

and that of OBJ routines, the transportation required
very little machine time for compiling, translating, and
interpreting PLC. The “compiler” and the “translator”
Z8800 are running successfully on our machine.

It would be worthwhile to note the following points.

a) As described earlier, the special file format of object
modules in our machine made the transportation rather
complicated and less comprehensible. If it were not, as
in OS/MVS, we could have modified Z370 so that it
would generate directly the object modules of our
machine, and the transportation scheme would be
greatly simplified by omitting the PLC stage.
b) The procedure we adopted is considered very useful
and efficient for the transportation between “OS-
incompatible” systems. The two programming tasks
necessary at each installation, translator modification and
implementing OBJ, can be proceeded independently,
after the specification of the intermediate code (PLC in
our case) and that of the routine calls are determined.

4. Miscellaneous Comments

The original compiler is capable of handling all of the
case, upper, quote, and point stroppings. That was a
very helpful feature for the transportation because we had
only restricted facility for handling lower case letters. We
had to deal with another problem with respect to lower
case letters caused by the unreasonable replacement of
lower case letters by Kana characters in the code system
of EBCDIK (not EBCDIC!).

The separate compilation facility of ALGOL 68C
strongly recommends its users to use “collective files” in
order to reduce the number of data definition statements in
job control commands. This is because a user is obliged
to manage three sets of files if the separate compilation
facility is to be used intensively; source files, object
files, and environment files which contain necessary
information at all handles. In the IBM 0OS/360 or OS/
MVS environment, a kind of files called partitioned
data set is available for this purpose. In our case (OS-7),
a similar kind of files exist. The difference between the
two is whether a member of a file can be defined as a
data set in JCL (IBM) and not (ours). This restriction
imposed by our system influenced the transportation to a
certain extent.

References

1. Lmpsey, C. H. and Boom, H. J. A Modules and Separate
Compilation facility for ALGOL 68, Algol Bulletin No. 43 (Decem-
ber 1978) 19-53.

2. BOURNE, S. R,, BIRreL, A. D. and WALKER, [. ALGOL68C
Reference Manual, University of Cambridge Computing Service
(1975).

3. Kawal, S. Lattice Structure Segmentation of ALGOL-like
Programs, Software—Practice and Experience, Vol. 9, No. 6 (1979)
485-498.

(Received April 19, 1979)



