Invited paper

Studies on Hashing PART-1:
A Comparison of Hashing Algorithms with Key Deletion

Takao GunNit* and EilicHI GOTO* **

Four concepts o (storage utility factor), U (average number of probes for Unsuccessful searching), I (that for
Insertion), and S (that for Successful searching) are introduced to compare speed and memory tradeoffs of
various hashing algorithms. An open addressing hashing scheme suited for frequent deletion of nonrelocatable
keys is proposed and analyzed in terms of the four concepts.

1. Imtroduction

Hashing as a fast matching technique now has many
new sophisticated applications beyond the simple symbol-
searching in compilers and assemblers. For example,
hashing is employed in programming languages, such as
LEAP (Feldman and Rovner [5]) and Interlisp (Teitelman
[13], Bobrow [4]), to implement associative data struc-
tures. McCarthy [11] proposed a “hash-Lisp” scheme,
where cons operation computes a hash address to store
the new pair in order to represent all S-expressions
uniquely; in HLISP, which is a “hash-Lisp” implemented
at the University of Tokyo, not only are the S-expressions
of McCarthy’s schema represented, but sets are also
represented uniquely by hashing, thus demonstrating an
application to formula manipulation (Goto and Kanada
[(D.

Hashing algorithms are divided into two classes ac-
cording to the methods for resolving collisions (or
conflicts): open addressing and chaining. While the sub-
sequent address is re-computed after each collision in the
former, it is obtsined by a chained link in the latter. Well-
known representatives for these classes are uniform
hashing (Algorithm D in Knuth [10]) for the foemer, and
coalesced chaining (Algorithm C in Knuth [10]) for the
latter.

Although numerous hashing algorithms have been
proposed and/or analyzed in the past two decades (140
references are listed by Knott [9]), we find some insuffi-
ciency with regard to the new applications. In this paper
we will treat two mutually-interrelated problems.

The first problem is the basis on which to compare
various hashing algorithms Traditionally, probe numbers
have been used as measures of efficiency, since they cor-
respond to numbers of memory accesses. While we will
also follow this line, we propose, in the first place, that
three conceptually different probe numbers be distin-

*Department of Information Science, University of Tokyo,
Tokyo 113, Japan.

**Institute for Physical and Chemical Research, Wako-shi,
Saitama 351, Japan.

Journal of Information Processing, Vol. 3, No. 1, 1980

guished; U for unsuccessful searching, I for insertion
after the search is unsuccessful, and S for successful
searching. Though each probe number has its own
significance, one (or even two) of them has sometimes
been neglected. Typically, U and 7 are often mixed up,
partly because unsuccessful searching is often followed
by insertion. However, unsuccessful searching rot fol-
lowed by insertion is also a fundamental operation in
hashing. For example, unsuccessful searching of tables
for the reserved words in compilers is not followed by
insertion once all the reserved words are inserted at an
initial stage. We will treat these numbers of probes with
equal emphasis. In the second place, we propose to use
storage utility factor o instead of the load factor o when
different hashing algorithms are compared with one
another. o is defined as

_ (storage occupied by inserted items)
7= (total storage allotted for table organization)’

(1.1)

The numerator is the indispensable storage required to
store the items, and the denominator includes, besides
occupied and unoccupied table positions, all the extra
storage (such as linkage area for chaining) to make a
hashing algorithm work effectively. Although «, as
defined by

_ (number of inserted items)
*= (total number of hash table positions)’

(1.2)

is helpful for analysis within a specific algorithm, it is
quite powerless once different algorithms are to be
collated. A very misleading feature of « is that the
denominator of (1.2) counts no extra storage required
for some algorithms; hence a, in such cases, has little to
do with the actual storage utility in spite of its literal
meaning. In Section 2 we shall compare several algo-
rithms with these new standpoints.

The second problem is how to treat deletion in open
addressing. Deletion of unused items is troublesome in
open addressing, because we have to mark unoccupied
table positions that are in collisions as “deleted” so as to
prevent fallacious, unsuccessful searching. Thus a table
position takes one of three states: empty, occupied, or
deleted (Morris [12], Knuth [10]). However, probe num-

bers are not reduced even though the number of inserted
items is decreased, and if deletion is frequent, the table
will have no empty position, because a deleted position
will never be empty again, unless the table is updated
somehow. Updates of a hash table by rehashing, that is,
by reconstructing the whole table, would not be practical,
because it involves (1) relocation of items, which is often
undesirable owing to mutual referencing of items in
complex data structures, and (2) the use of secondary
storage, as McCarthy [11] complained. (Though the
deleted position is not created by Algorithm R in Knuth
[10], it involves relocation of items in order to fill in the
deleted position, and it works only for the ‘“slowest”
algorithm, called /inear probing.) In Section 3, we propose
an update scheme that does not necessitate relocation
or the use of secondary storage. The point is to reclaim
as many empty positions as is possible, allowing some
deleted positions to remain. Although the remaining
deleted positions cause some inefficiency, we have found
this scheme to be reasonably efficient in certain cases. A
comparative argument and a detailed analysis are dis-
closed in Sections 3 and 4.

2. Comparison of Algorithms

In order to make the discussion concrete, we have
organized a hash table with respect to storage, as follows.
An item to be stored in the table will be identified here-
after with its key, which is k-bits long. A hash table
consists of M cells, each of which is k-bits long in open
addressing, and (k + p)-bits long in chaining (cf. Fig. 1).
The additional p bits in chaining are for linkage pointers.
Hence p is at least log, M. Let kx=k/p. We use this
“reduced” key length in the later analysis. Let n be the
number of keys in the table. Then the load factor «
becomes n/M in both open addressing and chaining, and
o becomes kn=kM=a in open addressing, and kn=
(k+p)M=(x/(x + 1))a in chaining, as seen in Fig. 1 (cf.
(1.1)). In coalesced chaining, a new key is inserted, after
encountering an end of a chain (denoted by I'), into an
empty cell, which is found by searching the table se-
quentially, so that the keys need not be relocated, though
chains may coalesce.

In this section we treat three more schemes of hashing.
One is a modification of open addressing proposed by
Furukawa [6] to reduce the value of U, and the other two
are concerned with what Morris [12] called “scatter
index table technique.”

In the traditional open addressing, U and I are “de-
generate,” because searching cannot be terminated until
an empty cell is encountered. This degeneracy is removed
in Furukawa’s collision (conflict) flag method by attaching
to each cell a one-bit flag (possibly with almost no
burden to storage) to indicate whether collisions have
once occurred at the cell. The flags are all set to 0
initially, and if a cell is probed on the way of insertion
of a new key, its flag is set to 1, so that flag 0 indicates
that no probe sequence for successful searching for

T. Gunit and E. Goto

Uniform Hashing

{with Purukava s oilisiun Flag Nethod)

j———— K bits o]

key

¥

Y7777

/7// M cells
Yy
. i
Jep bitssle— :.un—-——al
e VA

» NS

Fig. 1 Organization of hash tables.

v

another key includes that cell. Thus, searching can be
terminated if a cell with its flag at 0 is found,Ypossibly
before encountering an empty cell. The analysis in
Appendix A shows that U becomes smaller than 7 by a
factor 1/(1 —In (1 —a)). Because 1 «log, M < p in practical
cases, we neglect the additional bit in counting g, so that
g=a.

The scatter index table technique is particularly suited
for long (x being large) keys, though the upper bound of
o may be rather severe. The hash table of size M stores
only indices (pointers) to a separate key table of size N.
Thus each cell of the hash table is p-bits long, and the
key table k-bits long (open addressing) or (k+ p)-bit
long (chaining) (cf. Fig. 2). Collisions are resolved either
by open addressing within the hash table or by chaining
through the key table. Either method is almost as
efficient, as we shall see, in spite of Morris’s [12] state-
ment. The advantage is to be able to keep N just as small
as is enough to store all the keys and thus make M as
large as possible. Since a=n/M, not n/N, the possibility
of collisions decreases. As can be seen in Fig. 2, ¢’s for
the scatter index table techniques are, respectively,

-tk ddressi 2.1

a—pM+kN_r+Ka (open addressing), (2.1)

_ kn _ Kt haini 27

a—pM+(k+p)N—-z+x+la (chaining), (2.2)
where T=M/N.

Note that « in (2.2) has completely lost its literal meaning
as “load” factor, since the hash table stores only the

Studies on Hashing PART-1: A Comparison of Hashing Algorithms with Key Deletion 3

Table 1 Average numbers of probes and o for various algorithms.

Algorithm U I S c Om
" 1 1 1
uU* == 1=z —aln (1—a) 3 1
1 1 1 1
UF** mm m —aln (],a) a 1
CC**» 14120 1 hE —1-20)aer 1+t 1-20)+1a g £
rglet * rgle %) Tae 8o T3 k+1 k+1
1 1 1 KT K
SOt -lTotia m ——;h’l(l—-a) 'r_ﬂ_ca m
. 1 _ KT K
SCtt e % +a 1+a 1+5a TRl

*Uniform hashing
**Uniform hashing with Furukawa’s collision flag method
***Coalesced Chaining
tScatter index table technique with Open addressing
t*Scatter index table technique with Chaining

Scaiver index Teble Technique
with Open Addressing

bp Liteod e k bles >}
{ndes key —
¥ 1 .
A et / pa
i / 5 /
L
d
¥ cells
- Va4 /
M cells
—
A
A XE? TABLE
+.

INDEX HASH TABLE

Scatter Indcx Table Technique
with Chaining

fep bits st kp bite e Kk bite ————i
o ndex chain ey
A‘ N A / 4 1
ED;.: " ../ ,/
i zells A A 4 V4 /
1 A A // N cells
INDEX HASH TABLE

KLY TAELR

Fig. 2 Organization of scatter index tables.

heads of chains and « can be greater than unity. As for
o’s in (2.1) and (2.2), they have coherent meanings.

Now U, I, and S for the algorithms mentioned above
are tabulated in Table 1 (cf. Appendix B). Let us take
examples to get an idea how comparison based on o
looks.

Example I Short keys (k=1). In coalesced chaining o =
(1/2)a < 1/2: thus only half the storage, at most, can be
used to store keys. In other words, if the total available
storage is the same, and the number of keys is the same,
a of coalesced chaining becomes twice as large as that of

T+K+1

Table 2 Average numbers of probes in terms of o (x=1).

4 02 03 04 05

06 08

0.9
U 1.250 1.429 1.667 2.000 2.500 5.00010.000
U UF 1.022 1.053 1.103 1.181 1.305 1.916 3.028
CcC 1.106 1.280 1.588 2.097 — — —
I U,UF 1250 1429 1.667 2.000 2.500 5.000 10.000
CcC 1.703 2.373 3.369 4.816 — — —
§ U, UF 1116 1.189 1.277 1.386 1.527 2.012 2.558
CC 1.233 1.383

1.568 1.799 —_ - —

uniform hashing. Hence, a comparison of these two
algorithms should be made by substituting a=¢ for
uniform hashing, and a=20¢ for coalesced chaining, as
done in Table 2. (Because the scatter index table tech-
niques are not advantageous for short keys, they are
omittec.) We can see that uniform hashing is undoubt-
edly superior to coalesced chaining when keys are short;
even the naive scheme without collision flage is more
efficient as far as 7 and S are concerned.

Example 2 Long keys (k=4). In Table 3, k=4 is sub-
stituted for the five algorithms. Thus a=(5/4)c for coa-
lesced chaining, and we can see that it is now almost
comparable to uniform hashing. As for the scatter index
table techniques, parameter T must be fixed. This value
is determined by considering space/time tradeoffs; the
larger 7, the smaller ¢,,, maximum storage utility factor,
but the more efficient. In Table 3, =2 in the open scatter
index table, and T=1 in the chained scatter index table,
making both algorithms work up to ¢=2/3. Thus a=
(3/4)a with open addressing, and a=(3/2)¢ with chaining.
We can see that the scatter index table techniques are the
most advantageous in this example. Though these
g,,, techniques result in a rather small they have advan-
tages other than efficiency; the key table can be expanded
without affecting the hashing strategy, and deletion of
keys is trivial (Morris {12]). We will discuss the latter
point again in Section 3.

Table 3 Average numbers of probes in terms of a (x =4).

o 02 03 04 05 06 08 09
8) 1.250 1.429 1.667 2.000 2.500 5.00010.000
UF 1.022 1.053 1.103 1.181 1.305 1.916 3.028
U CcC 1.037 1.092 1.180 1.311 1.495 2.097 —
SO 1.026 1.065 1.129 1.225 1.368 — —
SC 1.041 1.088 1.149 1.222 1.307 — —
U, UF 1.250 1.429 1.667 2.000 2.500 5.00010.000
I CC 1.358 1.638 2.004 2.479 3.083 4.816 —
SO 1.176 1.290 1.429 1.600 1.818 — —
sSC 1.300 1.450 1.600 1.750 1.900 — —
U, UF 1.116 1.189 1.277 1.386 1.527 2.012 2.558
s CC 1.137 1.216 1.305 1.404 1.518 1.799 —
SO 1.083 1.133 1.189 1.253 1.329 — —
SC 1.150 1.225 1.300 1.375 1.450 — —

ilotc: t=21in SO and 7=1 in SC

Before closing this section, it should be mentioned that
the motivation of Bays’ idea ([1]) of introducing bilateral
transformation between load factors for open addressing
and chaining seems to be similar to ours. However, our
scheme is an intrinsically multilateral transformation of
various load factors. Because the storage utility factor
crucially depends on the key length «, it offers, so to
speak, a unified viewpoint, regardless of algorithms used.

3. Deletion in Open Addressing

In Section 1 we mentioned the three occupancy states
of a cell—empty, occupied, and deleted. The first one is an
unoccupied state which is not in collisions; the second
is an occupied state which is or is not in collisions; and
the last is an unoccupied state which is in collisions.
Generally, the cells are classified into 2M states in a
similar but more minute way as below. Let a; and b;
denote the fractions of cells in state A; and B;, respec-
tively O<isM—1).

occupied
yes no
none Ao By
once A, B,
collisions twice A, B,
M—1 times Ayv_1 Bum-

Also let A_ and B, denote the “unions” of A; (1 <i<M—
1) and B; (1 <i<M—1), respectively. If empty and de-
leted states are indicated by the respective reserved values
that are not identical with any key, these reserved values
corr spond to state B, (empty) and B, (deleted), respec-
tively. Note that in Furukawa’s collision flag method,
we can distinguish B, from B, by checking the collision
flag. Thus no reserved value is necessary. Moreover, A,
also is distinguished from A, by the flag. Therefore, we
can distinguish four states by the flag and occupancy of
cells.

T. Gunnt and E. Goto

The deleted state B, is double-faced in the sense that,
on searching, it acts as an occupied state, and on inser-
tion, as an empty state, so that the average number of
probes for unsuccessful searching is not reduced. What
is worse is, though a cell in state B, may sometime become
occupied again, it will never automatically be empty
again, even if all the colliding keys are deleted from the
table.

Therefore, when deleted cells pile up to cause too

inefficient searching, the hash table should somehow be
updated in order to reclaim empty cells. The following
update scheme is different from the so-called “‘rehash”
scheme, because no keys are relocated, and some deleted
cells may remain.
UPDATE SCHEME When deleted cells pile up to a
certain prespecified amount, all the deleted cells are
first marked as “empty.” Then for each remaining key,
the probe sequence is traced, and empty cells encountered
on the way are marked as “deleted” (by putting a
reserved value or by setting the collision flag to 1). This
UPDATE SCHEME can be part of a garbage collector,
if any, for the system.

Thus only the cells now in state B, are marhed as
“deleted”. Since each probe sequence is one for suc-
cessful searching, nS probes are necessary for a total
update. Because deleted cells still remain after an update,
average numbers of probes are not simply related to a.
In fact, they are not determined by « alone; they depend
on the past history of insertion and deletion.

Because mathematical settings for the analysis of
average numbers of probes are rather complicated, the
next section is dedicated to such an analysis, and we use
only the results obtained, in this section.

According to Section 4, if the system always uses the
hash table within a certain maximum load factor «,,
the average numbers of probes do not exceed the follow-
ing upper bounds.

In the scatter index table techniques mentioned in the
previous section, deletion causes no serious problem,
since we can ‘“‘rehash” the index hash table without
affecting the location of keys in the separate key table.
Now these techniques are compared with uniform hash-
ing as follows. Table 5 shows values of the maximum
storage utility factor o,, to realize values of U, I, and S

Table 4 Upper bounds of the average numbers of probes.

v 1 s
1
Bm m
Up* e e —
UFD** ! L1 1
F(Bm)+e~fm F(Bn)+efm " 1 —am I—am

1
- 1 —am+F(fm)

*Uniform hashing with Deletion
**Uniform hashing with Furukawa’s collision flag method and
Deletion
Xm (=x) 1

Note: Igm:]t"a_m, F(X):xngo Tx+n+l

Studies on Hashing PART-1: A Comparison of Hashing Algorithms with Key Deletion 5

Table 5(a) o when U, is given.

Un 20 30 40 50 60 70 80

UD* om 0.409 0.523 058] 0617 0642 0661 0.675

UFD** Om 0571 0.650 0689 0712 0.72 0.742 0.752

SO*** T 1.618 1.366 1.264 1.208 1.171 1.145 1.127
k=1 0.382 0.422 0.442 0.453 0.461 0.466 0.470
Om k=2 0.553 0.594 0.613 0.623 0.631 0.636 0.640
k=3 0.650 0.687 0.703 0.712 0.719 0.724 0.727
k=4 0.712 0.745 0.760 0.768 0.774 0.777 0.780

SC*** r 0.543 0.339 0.251 0.200 0.167 0.143 0.125
k=1 0.393 0.427 0.444 0.454 0.462 0.467 0.471
k=2 0.564 0.599 0.615 0.625 0.632 0.636 0.640
k=3 0.660 0.691 0.706 0.714 0.720 0.724 0.727
k=4 0.722 0.749 0.762 0.769 0.774 0.778 0.780

Cm

*Uniform hashing with Deletion
**Uniform hashing with Furukawa’s collision flag method and
Deletion
***Scatter index table technique with Open addressing
****Gcatter index table technique with Chaining

Table 5(c) om when S, is given.

Sm 20 30 40 50 60 70 8.0

UDi 6n 0.500 0.667 0.750 0.800 0.833 0857 0875
UFD om 0.500 0.667 0.750 0.800 0.833 0.857 0.875
SO t 1255 1.064 1.020 1.007 1.003 1.001 1.000
k=1 0.443 0.485 0.495 0.498 0.499 0.500 0.500
Om k=2 0.614 0.653 0.662 0.665 0.666 0.666 0.667
k=3 0.705 0.738 0.746 0.749 0.749 0.750 0.750
k=4 0.761 0.790 0.797 0.799 0.800 0.800 0.800
SC v 0.500 0.250 0.167 0.125 0.100 0.083 0.071
k=1 0.400 0.444 0.462 0.471 0.476 0.430 0.483
Om k=2 0.571 0.615 0.632 0.640 0.645 0.649 0.651
x=3 0.667 0.706 0.720 0.727 0.732 0.735 0.737
k=4 0.727 0.762 0.774 0.780 0.784 0.787 0.789
Table 5(b) o when I, is given.
In 20 30 40 50 60 70 80
UD o 0.409 0.523 0.581 0.617 0.642 0.661 0.675
UFD om 0.449 0.587 0.652 0.689 0.713 0.729 0.742
SO T 2.000 1.500 1.333 l.250 1.200 1.167 1.142
k=1 0.333 0.400 0.429 0.444 0.455 0.461 0.467
Om k=2 0.500 0.571 0.600 0.615 0.625 0.632 0.637
k=3 0.600 0.667 0.692 0.706 0.714 0.720 0.724
k=4 0.667 0.727 0.750 0.762 0.769 0.774 0.778
SC T 1.000 0.500 0.333 0.250 0.200 0.167 0142
= 0.333 0.400 0.429 0.444 0.455 0.461 0.467
Om = 0.500 0.571 0.600 0.615 0.625 0.632 0.637

0.692 0.706 0.714 0.720 0.724
0.667 0.727 0.750 0.762 0.769 0.774 0.778

x x x X
It
B S
o
(=]
[+
(=)
2

that are not greater than the prespecified values of U,

I, and S,, respectively: that is, in order to keep U, 7, and
S smaller than U, I,,, and S,,, respectively, the hash table
must be used within the specified ¢,. As for UD and

UFD, the derivation of a,, can be trivial. SO and SC
depend on the values of 1, since 6,,=k/(t+«) (for SO)
and o,,=k/(t+k+1) (for SC) (cf. Table 1). The appro-
priate T can be determined as t=1/a,, where a,’s are
what make values of U, I, and S equal to U,,, I,,, and S,,,
respectively (cf. Appendix B). Now, since o, shows how
full the storage can be used by keys, the larger the o,,
the more favorable. From Table 5 we can conclude that
even if deletion is frequent, uniform hashing with or
without collision flags is still more favorable than the
scatter index table techniques, if x <2, namely, for short
keys. If keys are longer, we might resort to the latter
schemes, unless full utility of the storage is more impor-
tant than speed. Note that UD (or UFD) is the only
algorithm that permits o to reach 1.

4. Mathematical Analysis

4.1 Markovian Model

Let ¢ be a discrete time variable that increases, one by
one, starting with 0, and let either insertion or deletion of
a single key take place at each time instant. Then a; and
b; at time ¢+ 1 are determined by those at time ¢ in the
following way. First, we assume that the hash table is
initially empty at =0 so that;

a0)=0 for i>0, by(0)=1,

If insertion takes place at time 7,

b(0)=0fori=1. (4.1)

a,~(t+l)=a,-(r)+ by1)

1
—n(t)

1
Mm@ 1@ @), (42

with the convention a_ ,(r)§0,

b(t+1)=b(1)— (t)b (), 4.3)
and if deletion takes place at time 7,
a(t+1)=a()— (t)a(t)+ (t) ;g (1)— (,)a(t)
4.4

. "]
b.-(t+1)=b.-(r)—,%,)b.»an%bm(m A0}

4.5)
where n(?) is the number of keys in the table at time 1.

(4.2) and (4.3) are derived as follows. On insertion, an
inserted new key collides, on the average, with (M +1)/
(M —n(t)+1)—1 occupied cells (cf. Knuth [10]). Hence,
the probability that an occupied cell increases its number
of collisions is (M + 1)/(M—n()+1)—1D)/n(t)=1/(M—
n(tr)+ 1). Because the new key is stored in one of M —n(t)
unoccupied cells, the probability that an unoccupied cell
turns into an occupied cell with the same number of
collisions is 1/(M —n(t)). As for (4.4) and (4.5), consider
a cell in state A; (or B,). Since one of n(t) keys is deleted,

6

the probability that one of i keys colliding with this cell
is deleted is i/n(¢). This is equal to the probability that
this cell turns into state A;_; (or B;_,). Since the new
deleted cell was one of n(t) occupied cells before the
deletion, the probability that a cell in state A; turns into

B; is 1/n(2).
From the definition of a; and b;, we have
M-1 n(r) M-1
¥ a=—7=a0), ¥ b()=1-a(). (46)
i=0 i=0

U1, Kt), and S(t) are related to a,(r) and b(t), as
below, when the collision flag method is employed.

1
U(¢)=m, 4.7

i L I us
I0= b T T=a s+ i=atty *¥
S@t)= 0% ':'g: (G4 Dag0)+ib o)} 4.9)

(4.7) and (4.8) are proved in Appendix A. (4.9) is obvious
since the total number of probes is n(¢)S(1) = Ma(?)S(1),
and this is equal to the total number of collisions plus
n(t); i.e.,

MY tia)+ib0y+M Y, ao).

Using (4.2)-(4.5) with (4.9) we have, if insertion takes
place at time ¢ (note that a(r)=0 for i<M—2, and
b()=0 for i<M —1 by the initial conditions),

1 }’ M+1
S(t+1)=n—(mln(t)S(l)+M_n(t)_l_l}, (4.10)
and if deletion takes place at time ¢,
S@t+D)=5(). @.11)

If the collision flag method is not employed, U and 7/
differ from (4.7) and (4.8). By denoting the average
numbers of probes for this case by U*, I'* and S*,

U*(t)=1*(1)= (4.12)

1
bo(1)’
since searching cannot be stopped until an empty cell is
found. S* is the same as (4.9), or (4.10) and (4.11): i.e.,

S*(1)=S(1).

4.2 Loading History Functions

It is obvious that n(t+1)=n(t)>1; n(t+ 1) =n(t)+1
indicating insertion at time ¢ and n(¢ + 1) =n(t) — 1 indicat-
ing deletion at time ¢ In this subsection we consider
general properties of such functions.

Definition A loading history function n is a function of
discrete variable e {0, 1,2, . . ., T'} such that,

n(0)=0, n(t+1)=n(t)=1 forall ,

and N<max,n(t)<M, ora,<N/M<1. (4.13)

T. Gunit and E. Goto

The value of N is the prespecified maximum number of
keys; the table is updated when the number of keys
reaches this value so as to recover empty cells. The set
of n’s is obviously finite, though T may be arbitrarily
large.

Definition Let n,; and n, be two loading history func-
tions. We write n,=n, and read “‘n, is under n,” iff
n(1)<n,(t) for all 1 (0<t<T). Let us write n,=n, iff
n,Sn, and n,<n,, and n,cn, iff n,Sn, and n, #n,.

It is easily verified that the relation < is reflexive,
antisymmetric, and transitive. Hence the set of loading
history functions forms a finite partially-ordered set. We
denote this partially-ordered set as ¥

Definition We writen nyc,n, and read “n, is prime
under n,” iff n; cn, and there exists no n; € & such that
ny,cnycn,.

The following lemma may be obvious.

Lemmad4.l 1If nyc,n,, then there exists one and only
one time ¢, such that,
n(t)=ny(t) for t—t,, n(t,)=n,(t,— -1,
and n,(t,)=n,(t,—D+1, 4.14)

and vice versa (cf. Fig. 3).

Definition Let a subset {n,o, n;,,""*,n,} of & be
totally ordered and its elements be arranged in ascending
order. This subset is said to be a connected chain between
nyoand ny, iffn o<, n <, - <, ny,. kissaid to be the
length of the connected chain.

Lemma 4.2 Let n, cn,. Then there is at least one con-
nected chain between n, and n,. Moreover, the length k
of the connected chain between n; and n, is determined

by n, and n,, independently of the chain taken, as

T
k=3 {ny(0)=m(0)}. (4.15)

Proof Appendix C.

n(e)

N

Fig. 3 n, is prime under n,.

Studies on Hashing PART-1: A Comparison of Hashing Algorithms with Key Deletion 7

4.3 Average Numbers of Probes as Functionals of n

Since the loading history function n determines the
whole past history, we can calculate the values of a;, b;,
U, I, and S at any given time ¢, if n is specified. In other
words, the values depend directly on the loading history
functions. Hence a;, b;, U, I, and S are functionals of n,
rather than being functions of time ¢ itself. We hereafter
denote these quantities at time 7 as functionals of n, like
ajn;t].

According to Appendix C, Z forms a finite modular
lattice. It is clear that n,,, as defined below, is the maxi-
mum element of the finite lattice &.

n(t)+tfor0<t<N, n,(N+1t)=N for event £>0,
and n (N+t)=N—1 for odd t>0. (4.16)

Definition A functional F[n; 1] is said to be monotone
increasing if it satisfies the following:

If n,cn, then Fln,; t]1<Fln,; t]forallz. (4.17)
Conjecture 4.1 U, U*,I,and I'* are monotone increasing
functionals.

Unfortunately, we find it hard to prove the conjecture
mathematically. Instead, we performed numerous numer-
ical calculations and confirmed that the conjecture holds
with very high numerical accuracy.

As for S, it is not a monotone increasing functional of
the loading history function. However, we have the fol-
lowing lemma:

Lemma 4.3 Let n be an arbitrary loading history func-
tion and ¢, be an arbitrary time instant, and let n, be
defined in terms of n, t,, and n,, as follows (cf. Fig. 4):

n(t)=n,(t) for 0<t<t +n(t)—-N+1,
n()=n(t)+t,—tfor t,+n(t)-N+1<t<t,,
(i.e., deletion takes place from time ¢, +n(t;)—N+1
tot,—1).

Fig. 4 n, n, and n, in Lemma 4.3.

Then,

S[n; t,1<S[n,; t,], (we assume n#.) (4.18a)

and

S[n,,; t,1<Shy; 1] (4.18b)

Proof (4.182): By virtue of LEMMA 4.2, there is a
connected chain between n and n,, such that n=n,c,
nyc, - <, n=n, Hence we have only to prove:

Sn;; 1,)<8S[ny4 5 1), wheren;c nj, .
By Lemma 4.1, there is a time instant ¢, <7, such that
ni(t)=n;,(t) for t#1, nt)=nft,— D=1, n;,(t,)=
ny.4(¢,—1+1. Then
S[n;; 11=S[n;, ;1] forr<t,
Let K=nyt,—D=n;,,(t,—1) and s=S[u; t,—1]=
S[n;41; t,—1]. Then,
S[n;; t,1=Sln;; t,—1]=s,
1) M+1
S[”j+1;tp]=m KSlnje s 1=+ 37—
1 M+1
=1<+1(Ker M—K+l>'
On the other hand,

(M+1]

1
Sn;; tp—i—l]:E*l(K— DS[n;; 1,1+ M———K+2f

1 M+1
=E<(K*”S+XZ—_K+_2)’

1
S[nj.y; t,+11=Sn;. 3 rp]=—<Ks+

M+1
K+1 :

M—K+1
Hence
Sl ty+ 11=Sln;; 1, +1]
_ 1 QRK-M—-1)(M+1) 0
“READ T MK DM—K+2)f
since s> 1 and the second term in the braces is greater

than —1 for 0< K< M. Since n;(t)=n;,(¢) for r<t,, by
virtue of (4.10) and (4.11),

S[n;; 1,1<Sln;.q; 4]

(4.18b): Since S[n,; t;1=S[n,; t, +n(t;))— N+ 1]=S[n,;
t, +n(t;)— N+ 1], we have only to prove:

Sn,; t; +n(t})— N+1]1<S[n,; 1],

or more simply,
S, 1< S[ny; 1411

Since the case of >N is trivial, we assume ¢> N. Then
there are two cases according as #n,(t)=N or N—1.
Case 1 n,(t)=N. Then

S[n,,; t+11=S[n,,; t].
Case 2 n,(t)=N-—1. Then

S[h; 1+ 11:1%{(]\,_1)5["”; ’Hﬁiﬁ}'

Hence if S[n,,; t]>(M + 1)/(M — N+2), then

M+1
M—-N+2’

On the other hand, since n, ()=t (for 0<t<N),

M+1 M+1
N & M=kl <M-N+3

Sy t]1<Sin,; t+1]<

1 N-1

Sln; Nl=

Hence

S[np; 1] < S[ny,; t+1].

4.4 Upper Bound of the Average Numbers of Probes

By Conjecture 4.1 for U, U*, I, and 7*, and by Lemma
4.3 for S, we have the following corollary.

Corollary 4.1 The values of U, U*, I, I*, and S at time
t are bounded by those of Uln,,; t], U*[n,,; t], I[n,; t],
I*[n,,; t], and S[n,,; t] respectively.

In case of U* and I'* (cf. (4.12)), we can set a smaller
upper bound owing to the simple form of eq. (4.3).
Suppose insertion repeatedly takes place from time ¢ to
time 7+ 5— 1. By the repeated use of (4.3), we have

M—n(t+s5)

bo(t+5)= mbo(t). (4.19)
Hence,
U*n; z]=M7__"£”(—:“)S)U*[n; t+sl. (4.20)

(Since U* and I'* are always the same, we omit the for-
mulae for 7*.)

By virtue of Corollary 4.1

U*[n; t+sl< U*[n,,; t+s). “4.21)
Hence, by (4.21) and (4.20)
U*[n;t]< —MF__'%I(T—)S)U*[”,,,; t+s]. (4.22)

Let s=N—n(t). Then n(t+s)=n(z)+s=N and n,(t+5)
=N. Since (M—n,(t+))U*[n,; t+s]=(M—n, () U*-
[n,,; t] by virtue of (4.20),

M—-N M—n,(t)

*[p - %[, - =
U [n,t]sM U*n,,; t+35) M—n(0)

_——n(t) U*[n,,; t].

(4.23)

For t—o0, Ulny,; t], U*[n,; t), Iin,; t), I*n,;t], and
S[n,; t] are shown to be asymptotically constant inde-
pendently of time ¢.

Let U,, I,.,, and S,, be the asymptotic values of Uln,,;
t], I{n,,; t], and S[n,,; t], respectively, as t—o0. In order
to estimate these values, it is convenient to treat (4.2)-
(4.5) as transitions of a vector. Let ¢(7) be a vector whose
components are

cft)=aft) and ¢y, (1)=by1)
O<i<N—1). (4.24)

By virtue of (4.6), c¢(¢) is a probability vector in the

T. Gunit and E. Goto

sense:
2N-1
Y cr)=1. (4.25)
i=0
(4.2) and (4.3) can be expressed as a formula:
c(t+1)=P(n(t))c(t), (4.26)

where P(n(t)) is a transition matrix that corresponds to
(4.2) and (4.3) as

1
P ain(t))=1- M—n)+1°

1
PZi,Zi—Z(n('))=m,

1
PZi.ZHl(n(t)):m

1
Pyisipie1(n(t)=1— m.
and all others are zero (0<i<N-—1).
P(n(t)) is a non-negative Markov matrix in the sense:

Pi(n(t))=0 for 0<i, j<2N—1,
2N-1
and Y p,n(t)=1for0<j<2N—-1, (4.27)
i=0
(4.4) and (4.5) can be expressed similarly:
c(t+1)=0(n(1))c(t), (4.28)

where
I
92i,2:n(1))= ‘m—ﬁ,
Q2i—2,u(”(t))=$,

G2iv1,2i01(0(@))=1— ﬁ,

Grimr 201 (1)) = ,%,)

1
q2i+1,2i(n(t))=m’

and all others are zero (0<i<N—1).

Q(n(1)) is also a non-negative Markov matrix.

Now consider n,. For t<N, the transition is in the
form of c(t+1)=P(N—1)c(t) and c(z+1)=Q(N)c(t)
alternately. Hence

c(t+2)=P(N—1)Q(N)c(t), (4.29)
or

e(t+2)=Q(N)P(N—1)c(1). (4.30)

Lemma 4.4 P(N-1)Q(N) is irreducible in the sense:
(P(IN-DQ(N)*<0 for some k<O. Similarly, O(N)
P(N—1) is irreducible.

Proof 1In the diagram below, a state at time ¢ and a

Studies on Hashing PART-1: A Comparison of Hashing Algorithms with Key Deletion 9

t t+2
A Ay
B B
A A
3 B
A A

Bys1

state at time 7+2 are connected by a line if there is a
positive matrix-element in P(N—1)Q(N), which allows
a transition between the two states. Since A(r+2) is
connected with A4;_,(t), A(t) and A, ,(2), all the 4, are
connected in (P(N—1Q(N)) if k> N. Although B(1+2)
is not connected with B;_,(¢), it is easy to see that
B(t+6) is connected with B;,_,(t) in (P(N-1DQ(N))®
via 4;_,(t+2) and A(¢r+4). Hence all the B,’s are con-
nected in (P(N—1)Q(N))* if k>3N. Likewise, all the
A’s and the B,’s are mutually connected with one
another in (P(N—1)Q(N))Y, if k is at least 3N. As for
Q(N)P(N-1), the proof is quite similar. [J

By virtue of Lemma 4.3, (P(N—-DQ(N)* and
(Q(N)P(N—1))* are positive Markov matrices for a
sufficiently large k. Let RW(N) and RP(N) denote the
positive Markov matrices which are thus constructed
from powers of P(N—1)Q(N) and Q(N)P(N—1) respec-
tively. Then (4.29) and (4.30) take the form:

c(t+2k)=RY(N)c(t) j=1, 2 for some k>0. (4.31)

As for the asymptotic behavior of the equation like (4.31),
the following result has been obtained (Bellman [2,
p. 266]):
lim,_, , c(t)=d", where d" is a probability vector
which is independent of ¢(0),
and dV is a characteristic vector of RUV(N) with
associated characteristic root 1.

Hence we can conclude that in (4.31), vector c¢(¢) as-
ymptotically approaches a steady state 4, which is a
characteristic vector of RY): i.e., d¥’=RUV(N)dY. The
specific form of each component of d’ can easily be
obtained in the following manner.
Let f(x, #) and g(x, t) be generating functions of a,(r)
and b(t) respectively:
N-1 N-1
flx,)= '2;) xlaft), g(x, t)= .Zo x'b(t). (4.32)
Then (4.2) and (4.3) for insertion are expressed in terms
of f(x, t) and g(x, 1) as

SO 1+ D=f(x,)+ 47 (t)y(x 1)
I-
el () 439
o 1 D=0 O oD (4340

Similarly, (4.4) and (4.5) for deletion become

2 1
S5, 4 y=pn 0 1 LED gy, @39
(7 >
g(x, 1+ 1)=g(x, 1)+ n(t;‘g—f;x—’) n(t)f(x 1. (436)

In the equation: dV'=RM(N)D, since RV(N) is at
least 3N-th power of P(N—1)Q(N), P(N—1)Q@(N)R®-
(N)ZRM(N) if N>»1. Hence

d®=P(N—1)Q(N). 37!

If deletion takes place at time ¢ and then insertion takes
place at time 7+ 1, we have from (4.33)-(4.36) (by put-
ting n(t)=N),

a
St 1+ =105, 0+ ELED L ot 0+ 5 DLt)
1- 1-x9 1
_M—Nx+2{f(x’t) & Lty } @9
17/
ox, 1+2=gte, 04 EEED L L iy o e SEEED Ll @)

Let f®)(x) and g'(x) be generating functions of the components of d'*), which is independent of ¢. Then we have

from (4.37)—(4.39),
d’f M)

(A=0{1 =y =)} =7 = {f+2=(B+3-Ny(1-x)} ——

2
(=01 -1 -0y L

1 N
M—-N+2 M-N'
(4.40) and (4.41) can be solved in terms of Gaussian
hypergeometric functions. The ones that do not diverge

where y= and 8=

—{B+2-(B+2-Ny(l—x)} —7—

df(x)

+Y(N= DB+ DfV(x)=0, (4.40)

(1)(x)

+9(N—=1pg(x)=0, (4.41)

at x=1 (since f(1)=N/M and g‘(1)=1—N/M) are

tStrictly speaking, d‘* is the characteristic vector of (P(N—1)Q
(N))*. This asymptotic equation corresponds to counting only the
terms of O(1/N?), neglecting O(1/N3).

10

FO)= %F(—(N— D, B+1, B+2;9(1-x), (4.42)

g“’(x)=<1—%)F(—(N~1>, B B+2; 5(1-x)), (4.43)

where

o () & D(p+il(g+i) 2
Foar)=o) &~ Tetn it

(4.44)

Similarly, generating functions f(x) and g®(x) of
components of d®, which satisfies d®’=Q(N)P(N—
1)d®, are

FO@= T F-(N=2), B+1, B+2; 91—, (445)

o= (12 V=1, 8, B2 90—,
(4.46)

The components of d are obtained from f“(x) and
g(i)(x) as

T difU(x) o [1 dig¥(x)
D=1 = D= | ~ -
e ‘[n | =G, @

Note that £(x), g("’(x), and g'¥(x) are polynomials of
degree N—1, and f®(x) of degree N—2. Hence no com-
ponents with a higher suffix than N—1 or N~ 2, appear.

Since U, U*, I, I*, and S sre related to q; and b; as in
(4.7)-(4.9), or (4.12), asymptotic values U,,, U, I, I},
and S,, can be calculated using (4.47). In particular, U},
(and I¥) for uniform hashing without collision flags can
be expressed in a simpler form. Notice that 53" (=g"(0))
and b (=g?(0)) are almost equal if M, N>»1. By
replacing (N—1)/M and N/M by a,,

1
T A= o) F(—=(N=1), B, B+2;7)’
When N- oo and Ny~a,/(l —a,) remains finite, the

right-hand side of (4.48) becomes e*/(! =%, (See Ap-
pendix D for the proof.) Thus

U*=I$

(4.48)

U;=I’:~eam/(l —am).

(4.49)
Hence by virtue of (4.23) and (4.49), we have the follow-
ing upper bound.

l-a, . I-2,
l—a(t)U"‘~ 1—a(t)

w1 —am
eﬂ(:)’

U*n; t]1=I*[n; t]<
(4.50)
where «(t)=n(t)/M.

As for S,,, while we can calculate the asymptotic value
by (4.9), it can be derived directly from (4.10) and (4.11):

g M+l _ 1
" M—N+2 l1-ga,

4.51)
Hence

Sn; 1] < Sy~ ——

T 4.52)

T. Guni and E. Goto

Table 6 Maximum average numbers of probes when deletion is

frequent.
o 02 03 04 05 06 07 08
U, UD* 1.824 1.535 1.948 2.718 4.88110.312 54.60

UFD** 1.049 1.129 1.281 1.582 2.272 4.428 18.83
I, UD 1.284 1.535 1.948 2.718 4.88110.312 54.60

UFD 1.273 1.487 1.795 2.274 3.151 5.429 19.57

S» UD, UFD 1.250 1.429 1.667 2.000 2.500 3.333 75007

*Uniform hashing with Deletion
**Uniform hashing with Furukawa’s collision flag method and
Deletion

U,, I, and S,, are tabulated in Table 6.
5. Conclusion

In this paper we have introduced a new vehicle g, the
storage utility factor, for use in the analysis of hashing.
Although we are not necessarily against chaining, we have
seen that open addressing is often favorable in the light
of storage and efficiency. Remember that, except for
open addressing, every other algorithm (including chain-
ing and the scatter index table techniques) has an upper
bound of o less than 1. The fact that «, the load factor,
can become equal to 1 (coalesced chaining), or even
greater than 1 (scatter index chaining), by no means
implies that the storage is utilized quite effectively; in
terms of the storage utility factor, they are valid within
a rather limited range of ¢. In this regard we suspect that
comparisons based on the load factor (such as the figures
in Knuth [10, p. 539]) are misleading.

In Section 2 we have treated only the cases where
“bucket” size b is 1. However, ¢ for b<1 may easily be
obtained by (1.1). For instance, ¢ for coalesced chaining
becomes kn/((kb+ p)M)=(x/(x+ 1/b))a, where a=n/Mb.
Needless to say, comparison of various algorithms using
buckets should be based on such ¢’s.

As for deletion, most of the previous treatments seem
to have been only qualitative. By virtue of our model of
loading a hash table, and the update scheme presented in
Section 3, we have seen that open addressing is not so
bad if keys are short, in spite of the troublesome “deleted
cells”. Since the favorable algorithm greatly depends on
the key length, an implementor of a hash-table system
might consult Table 6, or similar tables.

Unfortunately, the analysis of deletion in open ad-
dressing is not complete; a mathematical proof that U
and I are monotone-increasing has not been established.
In fact, there remains another open problem: namely,
the analysis of deletion in coalesced chaining when keys
are non-relocatable. If relocation is not permitted, the
same problem of ‘“deleted cells” also arises in this
algorithm. The analysis of such a case would be an
interesting theme for future research.

Studies on Hashing PART-1: A Comparison of Hashing Algorithms with Key Deletion 11

Appendix A: Average Numbers of Probes for the Colli-
sion Flag Method

With no Deletion Furukawa [6] derived a formula of U
in terms of M and n, though its dependence on a=n/M
is rather unclear because it involves several iterations.
Here we derive a formula of U in terms of « by consider-
ing a probability distribution of probe numbers.

Lemma A.1 Let p be a probability of an event P occur-
ring at a random trial. Then the average number of
trials, Np, until P takes place for the first time, is 1/p.

- Proof If P takes place at a certain trial, then no more
trial is necessary. Otherwise, N, more trials are necessary
on the average. Thus we have the following recursive
formula on Np:
Np=p-1+(1=p)1+Np).

Hence Np=1/p. O

Now let a, be the probability of a cell being occupied
and not in collisions. Since totally nS probes are made,
and the probability of a cell being probed at one probe is
1/M, the probability of a cell being probed i times totally
is ™H(/M)(1(1/MY*S™¢, or by approximating with the
Poisson distribution: («S)‘e ~*/il. Hence

ay=aSe *¥=—(1—2)In(1—a) (cf. TABLE 2.1).
A-n
Since 1 —a+a, is the probability that a search terminates
in the collision flag method, and by virtue of Lemma A.1,

1 1 i

U=T=iFa, T=a = (—a)

(A-2)
With Deletion

Lemma A.2 Let p and g be, respectively, probabilities of
vents P Q occurring at a random trial. Also let r be the
probability of either event P or Q occurring at a random
trial. Then the average number of trials, Npg, until both
P and Q (not necessarily simultaneously) take place, is

/p+1/g—1]r.

Proof If both P and Q take place simultaneously at
a certain trial, of which the probability is p+g—r, then
no more trial is necessary. If P alone takes place at a
certain trial, of which the probability is p—(p+qg—r)=
r—gq, then 1/g more trials are necessary until Q takes
place (cf. Lemma A.1). If Q alone takes place at a certain
trial, of which the probability is r—p, then 1/p more
trials are necessary until P takes place. Otherwise, if
neither P nor Q takes place, Np, more trials are neces-
sary. Hence,

Npo=(p+q—r)t+(—gX1+1/q)+(r—p)1+1/p)
+(1=r)(1+N),

resulting in Npo=1/p+1/g—1/r. O

As for (4.7), the key to be searched is assured to be new
by encountering a cell in state 4, or B,, of which the
probability is aq(t)+by(z). Hence we have (4.7) by
Lemma A.l. As for (4.8), we must know that the key to
be inserted is new and must find an unoccupied cell. The
latter happens with the probability 1 —a(?). Hence, by
Lemma A.2, I(2) is given by (4.8).

Appendix B: Notes on Table 1

Most of the formulae of U, I, and S are found in
Knuth [10]. Here we just make some additional remarks.
U of UF is derived in Appendix A. As for I of CC, the
additional ae® probes are for finding an empty cell by
sequentially searching the table (cf. Knuth [10, p. 517}).
For U of SO, note that one probe of SO consists of an
access to the index hash table, and an access to the key
table for a key comparison if the cell in the index hash
table is not empty. Since SO is suited for long keys, the
most essential portion of probe time is shared by accesses
to the key table and key comparisons. Thus we count
U=1 when the first probed cell in the index hash table
is empty, because in the latter case, the key table is
probed only once. Hence U=(l-a)l+o(l—a)l+
Yo, ai(l—a)i=1/(1 —a)—a. I of SO is 1/(1 —a) since, if
a search terminates at the index hash table, one more
access to the key table is inevitable. The same convention
for counting U and 7 is made in SC also. As for o, that
of CC is obtained Sy putting a=1, and those of SO and
SC are obtained by putting a=1/t, since a,=N/M=1/1.

Appendix C: Proof of Lemma 4.2

The first part of Lemma 4.2 is obvious, since & is
finite. As for the remainder, we need some preparations.

Definition A finite partially-ordered set 2 is said to be
upper semimodular when a, b, and c € 2 satisfy:

If a#b, cc,aand cc, b, then there exists de 2 such
that

acd and bcd. -1

Lower semimodularity is defined dually.
Lemma C.1 % is upper and lower semimodular.

Proof Letn;#n,, nyc,n, and nyc , n,. Since nyc,
ny, there is a time instant 7, such that ny(t)=n,(t) for
t#t,, ny(t,)=ns(t,, ~)—1, and n,(t,)=n,(t, — 1) +1.
Similarly, there exists a time instant ¢,, such that n;(r)=
ny(t) for t#t,, ny(t,)=ns(t,,—1)—1 and ny(t,)=
ny(t,,— 1)+ 1. Since n, #n,, t, #t,,. Let us define n, as
follows. ny(t)=n;(t) (=n,(t)=n,(t)) for t#t, and t#
1, na(t,)=n,(t,), and n,(z,,)=n,(1,,). Obviously n, =,
ny and n, <, n,. Lower semimodularity is proved dually.

It is shown that, in any (upper or lower) semimodular
finite partially-ordered set, all connected chains between
the same end-point elements have the same length

12

(Birkhoff [3]).

Since 3/_o {ny(t) —ny ()} =2 if nyc, ny, k=123,
{n,(t)—n.(¢)} for any n; and n, such that n, cn,. This
proves the second part of Lemma 4.2. J

In fact, n, in the proof of Lemma C.1 is the least upper
bound of n, and »n, in the sense n,<n,, n,<n,, and
there exists no n’ such that n, cn’, nycn’, and n'cn,.
Moreover, there exists a least upper bound between any

two n, n, € &, since nyun, defined as
(ny vny)(t)=max {n,(z), ny(¢t)} forallt, (C-2)

is obviously the least upper bound of n, and n,. A
greatest lower bound n,Nn, is defined dually. Hence ¥
forms a finite modular lattice, since it is both upper
and lower semimodular (Birkhoff [3]).

Appendix D: Proof of (4.49)

It suffices to prove

lim (1—)F(—(N-1), 8, B+2; p)=¢"4.

N-ow

First, from the definition (4.44), it is straightforward
that if Ny remains finite,

lim F(—(N-1), B, B+2; y)= lim F\(B, B+2; —NY),
N-ow N-w

D-1
where | F, is the confluent hypergeometric function:

e w [p+il(g) 2!
P99 X Hprigri) it

Note that Ny—f if N—oo. Hence we have only to prove
1Fi(B, B+2; =p=(1+p)e7’. (D-3)

From (D.S), we have the following equations, where {F{
stands for (0/0v), F,:

(D-2)

. pP—q .
1Fi(p, q; 2)=Fi(p, q; 2)+ —q“nFl(P» q+1;2), (D-4)

piFi(p+1, 9; 2)=pFi(p,q;2)+2,Fi(p,q;2). (D-5)

T. Gunit and E. Goto
By substituting p=p§, g=8+1 and v= -8,
1Fi(B, B+ 15 —B)=Fy(B, B+1; — B
1
'—ﬁ—+—11F1(ﬁ, B+2; —p), (D-6)

B Fy(B+1, B+1; —B)=B,F,(B, B+1; —~p)
—BiF\(B, B+1; —B).
Hence, by (D.6) and (D.7),

(D7)

1
ﬂ—_'_—lel(Brﬁ‘*'Z; —B)=F(B+1,+1; —f=e’
(D-8)

References

1. Bayvs, C. A Note When to Chain Overflow Items within a
Direct-Access Table, Comm. ACM 16, 1 (Jan. 1973) 46-47.

2. BELLMAN, R. Introduction to Matrix Analysis, 2nd ed., McGraw-
Hill, New York, N.Y., (1970).

3. BIRKHOFF, G. Lattice Theory, 3rd ed., American Mathematica|
Society, Providence, Rhode Island, (1967).

4. BoBrow, D. A Note on Hash Linking, Comm. ACM 18, 7
(Jul. 1975) 413-415.

5. FEeLDMAN, J. A. and Rovner, P. D. An Algol-Based Associative
Language, Comm. ACM 12, 8 (Aug. 1969) 439-449.

6. Furukawa, K. Hash Addressing with Conflict Flag (in
Japanese), Johoshori 13, 8 (Aug. 1972) 533-539, Information
Processing Society of Japan.

7. Gorto, E. and KANADA, Y. Hashing Lemmas on Time Com-
plexities with Applications to Formula Manipulation, in R. D.
Jenks (ed.) Processing of the 1976 ACM Symposium on Symbolic
and Algebraic Computation, Yorktown Heights, N.Y., (Aug. 1976)
154-158.

8. Gunn, T. Analysis of Hash Addressing Methods, Technical
Report 76-03, Department of Information Science, University of
Tokyo, Tokyo, (1976).

9. Knortt, G. D. Hashing Functions, The Computer Journal 18,
3 (1975) 265-278.

10. KnutH, D. E. Sorting and Searching, The Art of Computer
Programming, vol. 3, Addison Wesley, Reading, Mass., (1973).

11. McCARTHY, J. in D. Bobrow (ed.) Symbol Manipulation
Languages and Techniques, North Holland, Amsterdam, (1971)
151-152.

12. Morris, R. Scatter Storage Techniques, Comm. ACM 11,
1 (Jan. 1968) 38—44.

13. TEITELMAN, W, Interlisp Reference Manual, Xerox Palo Alto
Research Center, Palo Alto, Calif., (1974).

