Design and Implementation of
a Multipass-Compiler Generator
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A compiler generator (compiler-compiler) is described for automatically generating compilers allowing

multipass parsing and optimization.

The concept of multipass partial grammar parsing is presented, and relevant new features for its realization

in a compiler generator are shown.

Description to the compiler generator is designed so that it is a complete and readable description of com-
piler and user program’s run-time environments. The description includes those for lexical analyzer using
regular expressions, syntax and semantics of each pass using a modified attribute-grammar, and run-time

prelude.

To facilitate a long term effort for compiler construction, the compiler generator is organized so that it can
incrementally or partially generate or regenerate a compiler.

1. Introduction

In many recent programming languages, definitions
and uses of language constructs may appear in any
order. This generosity have been causing some difficulties
in the compiling process.

One most commonly arising case concerns labels and
“go t0” statements using the labels. In a situation

begin
begin
goto L; (0
end
end
what “L” denotes at line (1) cannot be determined at

that point.

Another commonly arising difficulty in block struc-
tured languages is the identification of variables in
procedure bodies, as follows (cf. Algol 60).

begin
proceduref;--.x+g...; )
integer procedure g; g: =---; ?3)
integer x; @
end

The exact specification of “x” and “g” at line (2) cannot
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be found until lines (3) and (4) are analyzed.

Similar difficulties arise in processing mutually recur-
sive procedures, or in processing declarations and uses
of operator (priority) and mode in Algol 68 [1].

As the above mentioned difficulties cannot be dealt
with efficiently in a single-pass compiler, we have
proposed in a previous note [2] a compiler generator
(often called compiler-compiler or translator writing
system) which generates compilers allowing multipass
parsing and optimization. (see also [3, 4, 5, 6])

As far as we know, compiler generators for multipass
parsing do not exist. Most of the existing compiler
generators are just able to generate single-pass com-
pilers [7-14]. Although there have been some attempts
at automatic generation of multipass compilers, they do
not realize multipass parsing. For example, in MUG2
[15], the compiler generated by the compiler generator
creates at the first pass a (somewhat optimized) parse
tree, and at later passes it gives semantic attributes to
nodes of the tree, evaluates them, and makes optimizing
transformation on the tree. Since this tree construction
should be completed during the first pass, the parsing
is essentially single-pass. This cannot settle difficulties
such as above mentioned ones for Algol 68 compilers.
For example, the complete analysis of an ‘“‘expression”
could not be made during the first pass in case their
operator priorities are defined later in the source text.

In contrast to these systems, we have adopted a real
multipass parsing without creating the parse tree. In
this note, we present the concept of multipass parsing,
and we show relevant new features for its realization in
our compiler generator.

To describe our system, we first present design phi-
losophy, and then give an outline of multipass parsing
and the compiler generator. Next, lexical analyzer,
multipass parsing and semantic processing will be
described in order.



78

2. Design Philosophy

In designing our compiler generator we have stressed
the following three criteria:

(1) Complete, readable, easily modifiable compiler
description: —

Compiler generators are not only designed for saving
labor, but are also a tool for complete and formal
description of compilers which are really complex objects.
To make the description complete and integrated, our
description includes (i) user programs and data, (ii) the
run-time prelude, and (iii) the usual compiler description.
In other words, our system unifies compiler generator
and compiler. To make the description formal, readable
and easily modifiable, an appropriate description
language is supplied for each description unit.

(2) An efficient usable compiler generator which can
flexibly and partially regenerate a compiler when-
ever part of the description is changed in future: —

The criterion (1) could not be guaranteed by a system
which requires the regeneration of the whole process,
on account of a single bug in the compiler description.
(3) Machine-independence considerations: —

The portability of a compiler generator is also closely
related to its products and descendants, i.e., generated
compilers and object codes generated by them. We have
taken care to logically discriminate machine-dependent
parts from other parts in all of the above three levels of
systems.

3. Overview of Multipass Partial Grammar Parsing and
of the Compiler Generator

Our objective is to automatically generate a compiler
which analyzes source text by multipass parsing. Brief
explanation of multipass parsing will be shown using
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Fig. 1 Schematic view of multipass partial grammar parsing.
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a schematic view in Fig. 1. The parser of each pass
usually reads input text of the pass (blank portion in
the figure) and copies it into output text of the pass.
When the parser catches the starting position of the
partial grammar parsing for this pass, it enters the
parsing mode, analyzes the input text (shaded portion
in the figure), and outputs the goal symbol. Usually
plural analyzed portions are interspersed in input and
intermediate texts. Thus, our scheme should be more
strictly called ‘“‘multipass partial grammar parsing”.
(The simple term “multipass parsing” will also be used
in this paper.) For reader’s convenience, we have filled
up Fig. 1 with an example of the compilation process
for Algol 68, although multipass parsing is by no means
special to that language as can be seen in sequential and
concurrent Pascal [16, 17]. In the example of Fig. 1,
user-defined mode indicators and user-defined operator
symbols are collected at pass 1, declaration parts are
parsed at pass 2, then at final pass the rest of source text
is parsed and the complete object code corresponding to
source text is generated.

Next, a schematic view of our multipass-compiler
generator is shown in Fig. 2.

The input description to the compiler generator
consists of the following description units, written
respectively in appropriate description languages:

(1) Lexical analyzer (of the first pass): regular
expressions (to be presented later).

(2) Syntax and semantics for each pass: modified
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Fig. 2 Schematic view of multipass-compiler generator.
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attribute-grammar description with procedure-oriented
language (Algol 68-style macro-extended Fortran) (to be
presented later).

(3) Lexical and semantic subordinate routines:
procedure-oriented language as above.

(@) Run-time prelude (standard environment): the
language acceptable by the generated compiler, or
others.

(5) User programs and data: the language acceptable
by the generated compiler.

The compiler generator inputs the above description
and outputs a multipass compiler. The compiler genera-
tor consists of a “master control program”, several sub-
generators, and interface files for passing information
among these sub-generators.

A compiler generated by our compiler generator
consists of modules corresponding to each description
unit. For the analyzer of second to last passes, a standard
lexical analyzer is supplied. The compiler analyzes
source text according to multipass parsing and outputs
object codes.

4. Lexical Analyzer Generator

There are several tools for automatically generating
lexical analyzers, for example Lewi’s [10] and LEX [18].
We adopt here a similar but extended approach using
regular expressions.

Figure 3 is an example description of lexical analyzer
for Algol 68. In general, the description consists of a set
of “class” ’s which are collections of characters to be
used to discriminate terminal symbols (tokens), a set of
“table”’s which are the tables of keywords etc., and a set
of “symbol”’s which specify terminal symbols correspond-
ing to each “class”. “Symbol’’s are described in regular
expressions together with procedure names and terminal
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Fig. 3 An example description of lexical analyzer using regular
expressions (for Algol 68).
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symbol names. Procedure names are prefixed by “7”.
These procedures are pieces of codes to be executed
whenever a terminal symbol specified by the relevant
regular expression is recognized. They can be written by
compiler-writer using an Algol 68-style language which
are translated into Fortran by a pattern matching macro
processor [19]. Terminal symbol names are prefixed
by “!”. The names themselves can be used as terminal
symbols in the description of syntax.

The description for lexical analyzer extends regular
expressions in several aspects. Some of the main features
are illustrated by the following examples using Fig. 3.
(For further details, see [29].)

Example of bold tag symbol:

Suppose for example that “.BEGIN” is given as input.
(The preceding “.” is for hardware representation.)
The lexical analyzer scans ., selects the ‘‘class”
PERIOD, and jumps to *“‘symbol” PERSEQ. It skips
the first character which belongs to PERIED (in our
description, “—’" means skip, i.e., does not store in
the string area) and scans input while the regular ex-
pression LET(LET|DIG)* is being recognized. Here,
{+++]-++|*++)> in the description means (--:| |- *)*
in the wusual mathematical notation for regular
expressions. Scanned characters are usually stored in
the string area, and now the string “BEGIN” is stored
there. The lexical analyzer searches for “BEGIN” in
“table” TERM2 (by .IN), succeeds in finding it, and
returns BEGIN as the terminal symbol name. (If it
failed, the .OUT part of the description would be
selected.) Of course BEGIN is internally represented by
an integer number.

Example of string:

Suppose for example that “ 'DON''T'” is given as
input. The lexical analyzer scans single-quote, selects
the “class” QUOTE, and jumps to “‘symbol” STRING.
Then, the description of ‘“‘symbol” STRING makes it
possible to store “DON’T” in the string area, as follows.
The lexical analyzer skips the first character, single-
quote (by “—3$”). Here, “$” specifies a one-character
matching, which is made to match a single-quote in this
“regular expression”. The lexical analyzer continues to
scan input while the input is (i) a newline which is
skipped (by “—"@'” where “—’ means skip and
“!'@” means newline), or (ii) not a single-quote (by
“—$"), or (iii) a succeeding pair of single-quotes of
which the first is skipped (by “—$$”). Finally it ends
scanning when the closing single-quote is found, which
will be skipped (by “—$"). Now, the procedure STORE
is called, which should return an integer flag 1 or 2.
According to this flag, either CHARCON or STRCON
is selected as terminal symbol name.

Example of colon-sequence:

The reader will easily find that the “symbol”” COLSEQ

accepts the following inputs

= = =

“1” nhot

Here, “/” in the description means empty,
P y
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followed by a name specifies that the token scanned
until that time is itself the terminal symbol name.
Comparing with other lexical analyzer generators
[10, 18], our system can be characterized in the treatment
of “table’s, specification of skip (“—"’), selection of
terminal symbols by procedures (“!(-:-, -+, :**)”)
and automatic internal numbering of terminal symbols.

5. Multipass Partial Grammar Parsing

In this chapter, we shall present main features provided
in our multipass partial grammar parsing scheme,
drawing on an excerpt description of a compiler for
Algol 68 subset (Fig. 4). We assume for simplicity that
the compiler collects declarations at the first pass, and
analyzes the rest at the second pass. In the research
reported here, we have restricted ourselves to the
application of SLR(1) parsing techniques in all passes,
though, in general, our parsing scheme is independent
of the grammar class. Detailed and formal description
on our multipass parsing can be found in [5].

5.1 Starting and terminating partial grammar parsing

The partial grammar parsing of a pass is illustrated
in Fig. 5. The i-th pass parser is given a partial grammar
(i-th pass syntax) G, which is a subgrammar of the whole
grammar G. The parsing is made only on partial portions
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Fig. 4 An example description of partial grammars for pass 1
and 2 (Algol 68 subset).
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of the i-th text (shaded portion of the text in the figure)
which correspond to sentences of L(G)), the language
generated by G,. The goal symbol S; of the partial
grammar G; is output to the (i+ 1)-th text, which will be
treated as a terminal symbol at the next pass. For the
other portion of the text (blank portion of the text in
the figure), the i-th pass parser merely copies i-th text
into (i+1)-th text. (Note that in the case of the first
pass, the parser copies the internal form of source text
produced by the lexical analyzer into second text.)
In order to catch the starting position(s) for i-th pass
parsing, two terminal symbol sets must be given. The
first is the set of terminal symbols preceding sentences
of L(G,), which will be called PREC;. The second is
FIRSTS(S)), the set of first terminal symbols of sentences
of L(G,). While the latter can be computed automatically,
the former cannot since it is not part of the language
L(G)). Thus, it should be specified explicitly in the
description of the syntax of each pass. The i-th pass
parsing is “‘triggered” whenever a terminal symbol
a€ PREC; is followed by a terminal symbol be
FIRST$(S), in the i-th text.

Similarly, to determine the terminating position of a
partial grammar parsing, we must explicitly specify in
the description the set of terminal symbols succeeding
L(G;), which will be called SUCC,.

In the description, these two sets are specified as

S; .BEFORE SUCC; .AFTER PREC;- - -
(see #(D)# in Fig. 4).
5.2 [Extra goal symbel

The determination of starting position for partial
grammar parsing by two adjacent input terminal symbols
as mentioned above has a weak point. As an example,
suppose that we want to collect declarations of an Algol
68 program at the first pass. We encounter a difficulty

Sy N

a[B/7777777777/d

l
1-th text

[ 54 Sq
{i+1)-th text

Fig. 5 Partial grammar parsing of pass 7.
Parsing in LR(1) family is assumed. S;: goal symbol
of partial grammar G, of pass i, a € PREC,,
b € FIRST$«(S,), d e SUCC,.
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{
A

ref int x ; . . .

(1) declaration

;ﬂ?(y):-Z;
(2) cast S{

Fig. 6 Extra goal symbol.
S'%: extra goal symbol.

arising from the similarity between ‘declaration” and
“cast” (Fig. 6). Since
; € PREC, and ref € FIRSTS«(S)

hold, the parser inevitably enters the partial grammar
parsing when catching ““;” followed by “ref”. However,
in the “cast” case, this is an undesirable action. In order
to escape from this difficulty, we adopt a strategy to
exit from parsing when the parser catches “(”, namely,
as soon as the parser is aware that ‘“‘cast” is being dealt
with.

In general, we have designed our parser to be able to
exit from parsing, given the specification of a set of
nonterminal symbols (S})s such that

*
’
S;, = Sja
Gy

and a set of succeeding terminal symbols (which is a set
including “)” in the above case). We have named S; an
“extra goal symbol”.
Using this feature, the above “cast” case can be
specified by
S; .BEFORE '('
(cf. #(D")# in Fig. 4.)

5.3 Saving and restoring parser state

Another problem of partial grammar parsing arises
in the following case.

Supposing again that we are collecting declarations of
an Algol 68 program at the first pass, the input

cepinti i=n+1,5;

causes a problem that it contains an initialization
portion “:=n+1" which we do not want to parse in
this pass. For this purpose, a mechanism is supplied for
saving parser state, restoring it and continuing partial

grammar parsing thereafter. Schematically, it can work
as follows:

save restore

Only underlined portions are parsed by the partial
grammar.
Another example follows:

proc p=(real a) real |: - - -

save restore
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After saving parser state, the partial grammar
parsing continues as usual. Thus, nested saving and
restoring can be processed as shown below:

int i | :=begin int k :=201£; endH 1=n+3|;

save restore
save restore save restore

An example description of this feature is
MVAR .BEFORE ':='
.RETURN ', ;'

(save)
(restore)
(cf. (D) in Fig. 4).

5.4 Replacing input terminal symbols

Recall the identification problem of variables in a
procedure body (“x” and “g” at line (2) of Chapter 1).
Such a problem can be treated in general in either of
two ways. Namely, (i) using the same terminal symbols
in the syntax for any case and distinguishing them in the
semantics, or (ii) using different terminal symbols in the
syntax by distinguishing them in the lexical analyzer.
Method (i) requires no modification of the compiler
generators, but since method (ii) conforms to multipass
parsing, we have included a feature for replacing input
terminal symbols by other terminal symbols in the
lexical analyzer. Note that we have already presented in
Chapter 4 the selection of terminal symbols in the
lexical analyzer of the first pass. Here, we show a similar
feature in the lexical analyzers of second to last passes
which are usually system supplied.

We assume that the treatment of “x+g” in each pass
will be

x+ g
(first pass) ID+ID
(second pass) ID+FID

Namely, in the first pass, ID is used for any entity which
looks like an identifier; in the second pass, it is replaced
by FID (function identifier) or ID (other identifier) in
the lexical analyzer of that pass. To specify this, a
description such as

.REPLACE 'ID' ?IDFID !(ID, FID);

should be included in the second pass description. The
replacement is in fact performed according to the integer
flag returned from the procedure IDFID which discrimi-
nates the two cases.

This feature is vital to the treatment of operators in
Algol 68 where their priorities may be declared later in
source text. (cf. #(F)# in Fig. 4).

5.5 Additional features for multipass partial grammar
parsing
In order to fully exhibit characteristic features of
multipass parsing and to reduce the number of passes to
the minimum, additional features are included.
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Catching range structures

In block structured languages, we would want to catch
range structures of source text, such as

begin- - -end
do ---od

in addition to the partial grammar parsing which, for
example, collects declarations. Here, begin etc. are
named “‘range opening symbols” and end etc. are named
“range closing symbols”.

However, recall that our parser can be given only one
partial grammar for each pass. Since range opening and
closing symbols such as “begin” are outside the sentence
of partial grammar for collecting declarations, they are
hard to catch in the same pass. Thus, we have added
a mechanism to catch range structures simultaneously
with the usual partial grammar parsing.

We have further extended the concept of range struc-
tures to allow for subdivision. For example, to deal with
the following nested structure of Algol 68:

if
then

else

we can define
if -.-then
then- - -else
else - - -fi

as subdivisions of ranges, which are named “‘subranges”’.

The information collected in a subrange can be
attached as an atrribute to the range opening and closing
symbols, for utilization in later passes. For this purpose,
semantic actions can be called when range opening and
closing symbols are recognized (cf. SEML and SEMR
at #(A)# in Fig. 4).

Catching label definitions

The treatment of label definitions in compilers has
many similarities with the treatment of declarations.
However, we realize again that the former is hard to
handle in the same pass as the latter since label definitions
are outside the sentence of partial grammar for declara-
tions. On the other hand, label definition forms are
usually simple and present almost the same syntax in
most programming languages. We have taken advantage
of this fact to process them simultaneously with the
usual partial grammar parsing. Thus, labels can be
caught by specifying the two consecutive terminal
symbols for label definitions (for example, ID and “:”)
and the set of terminal symbols preceding it. (cf. #(C)#
in Fig. 4).
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6. Description and Evaluation of Semantics

6.1 Modified attribute grammar

There is not yet agreement on the best formal notation
for semantics. A prominent candidate is the attribute
grammar introduced by Knuth [20]. It has been widely
known as a powerful description method for the specifica-
tion of programming languages and their compilers.
However, its use may result in a dilemma, that is,
semantic evaluation speed is usually very slow and its
power is rather restricted or insufficient compared with
real compilers which use hand-coded routines.

Another attempt at formal notation for semantics
can be found in the Affix grammar used in CDL compiler-
compiler [8]. It relies intrinsically on top-down recursive
descent parsing. Syntax and semantics are mixed up in
a production rule which, in our opinion, results in a
rather puzzling representation similarly to hyper-rules
of Wijngaarden grammar [I].

Considering these points, we have developed a modi-
fied type of attribute grammar as the description language
for syntax and semantics. In our style, evaluation by
semantic attributes can be processed efficiently and may
be intermixed with evaluation by programs in procedure-
oriented language which use variables and tables as in
hand-coded routines.

In contrast to the original attribute grammar, the
evaluation of semantics in generated compilers is directed
by bottom-up parsing without actually building the parse
tree. Therefore, in a strict sense, inherited attributes
cannot be accepted in our system. Instead, we introduce
global entities, whose values can be determined using
the information collected in previous passes. The
introduction of global entities generally destroys the
semantic locality of attribute grammars. However, we
have confirmed from experience that using global entities
makes it possible not only to replace inherited attributes,
but also to facilitate natural description of semantics
in a representative case, as will be shown later (Sec. 6.4).
Moreover, use of global entities and avoidance of parse
tree construction bring a considerable amount of speed-
up of semantic evaluation, because the slow processing
speed in the original attribute grammar results mainly
from passing of local values of attributes from node to
node within a parse tree. Comparisons with other
compiler generator systems will be discussed later.

An example description (““if statement” in Algol 68
subset) can be seen in Fig. 7. It may be considered as a
bottom-up version of Simonet’s description [21] with
code generation, and is comparable in simplicity. Strings
enclosed by single-quotes, for example 'IF', are terminal
symbols. Strings not enclosed by single-quotes, for
example IF, are nonterminal symbols. Semantic synthe-
sized attributes are enclosed by “(”’ and “>»” in produc-
tion rules, for example DECS and VALUE. CODEFILE
is a special synthesized attribute for object code.
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<s ENV +:w DECS #>
“«na ELSE(DECS) 55 veusercoecss
<o SAME &> o
“’oe usz.omuvuu:-cooErch) => SERIAL_CLAUSECVALUE +CODEF ILE> o
£9M) 4 ELSE.CLAUSE(VALUE‘(DDEFILE) => ELSECDECS> ELSE.PARTCVALUECODEFILE>
ENV =iw

S
#(98)# ELIF(DECS) BOOLEAN-CNDOSER-CLAUSE(VALUi CODEF ILE>

1 SAM
#1008 AL'ERNATE as CLAuszALu(.CoDEFlLE LABEL)> => THEN-CLAUSECVALUECODEF [LEL>
<% LABEL := LNUM
CODEFILE :® CUDEFILEL ¢ CODE(LABEL":”) &)
#C108)# YNEN-(LAUSE(VALIIEl CODEFILEL> ELSE.CLMISE(VALUE? CODEF ILE2>
<% COERCESTEP ;= COMMONTO(MODE (VALUEL) +MODE (VALUE2)) i
+IF COERCESTEP = 0 ,THEN ERROR F1 §
VALUE := TEMP(RESULTMODE (COERCESTEP))
LABEL = LNUM i
LABEL2 ;= LNUM
CODEF ILE t= CODEF[LEL + CPROCJ(CDERCESYEP»VALUE VALUEL)
CODE(*=>"sLABEL2/ LABEL
+ CODEFILE2 * CFROCS(COERCESVEP'VALUE-VALIJEZ)
+ CODE (LABEL2+*
#¢11)# BOOLEAN.CHOOSER.CLAUSECVALUE ! COBEFILS) -
ENOU]RV.ELAUSE(VALUE: CODEFILEL> ALTERNATE.B_CLAUSECVALUE sCODEFILE2LABEL>
ODEFILE :» CODEFILELl ¢ CODE(VALUEI- C=0}=>"«LABEL) + CODEFILEZ #>+
Qe BOOLEAN_CNOlCE-(LAUS((VALUE COOEF [L
IFCDECS)> BOOLEAN.CNOOSER.CL‘USE(VALUE-CODEF]LE) It
(# ENV =i= DECS #>

Fig. 7 An example description of syntax and semantics using
a modified attribute grammar (“if statement” in Algol
68 subset).

Attributes differing only in their trailing digits, for
example VALUE and VALUE]I, are regarded to be of
the same type. User-specified semantic actions are
enclosed between “{(*” and “‘*)”".

6.2 Semantic evaluation

Our system supports two types of semantic evaluation.
The first type of semantic evaluation proceeds in the
same manner as in the usual attribute grammar. Namely,
if same (synthesized) attributes appear in both sides of
a production rule, such as DECS in Fig. 7 #(1)# or
VALUE and CODEFILE in Fig. 7 #(5)#, then, assign-
ments of the right-hand side attributes into left-hand
side ones take place. (The direction of assignment
corresponds to bottom-up parsing.) The second type of
semantic evaluation proceeds according to the user-
specified semantic action enclosed between “(*” and
“#>”. It can be written in a procedure-oriented language
similar to the one used in subordinate routines for
lexical analyzer. Further, the use of macros can make
description much more readable, for example,

ENV +:=DECS

which is in fact no other than a procedure call.

6.3 Implementation of semantic attributes

In practical implementation, operations on semantic
attributes are converted into operations among semantic
stack elements, for both types of the above semantic
evaluation. This realization method together with the
introduction of user-specified semantic action in
procedure-oriented language can achieve compile-time
semantic evaluation speed as efficient as hand-coded
compilers, still preserving readability of description.
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Several implementational issues exist which need
precaution. However as space is limited, we point out
here only the ‘“‘aliasing’ problem. Observe, for example,
VALUE associated with ALTERNATE-B-CLAUSE
(Fig. 7 #(10A)#) and VALUEl associated with
THEN-CLAUSE (Fig. 7 #(10B)#). Since we realize
the attributed tree implicitly on semantic stacks, the
two attributes are mapped to the same position on the
semantic stack VALUESTK. The problem is that
assignment to VALUE may destroy VALUEI, or vice
versa. The implementation handles this and other
problems properly, and further makes some optimization
which are all transparent to the users.

6.4 An example of semantic evaluation

As an example of semantic evaluation, we illustrate
the treatment of ‘““active” declarations according to the
description of Fig. 7. Suppose that declarations have
been collected at the first pass, and that the following
text is given to the second pass.

(ENV =empty is here assumed)

if
(DECS)-reremereemrseeaeneeas > (declarations in (i))
0] (ENV=(i))
then
(DECS)--wenme > (declarations in (ii))
(i) (ENV =(i)+(ii))
else
(DECS) > (declarations in (iii))
(iii) (ENV = (i) + (iii))
fi

(ENV =empty)

Here, each semantic attribute DECS has been made to
possess declarations appeared in the corresponding
subrange. ENV is a global entity corresponding to the
“environment” (collection of active declarations at each
stage) which serves as a substitute for an inherited
attribute. Now, in recognizing “if”, the reduction by
the production rule (1) takes place, and DECS (for
declarations in subrange (i)) is added to ENV. Then,
if no surrounding declarations had existed, ENV may be
schematically expressed as “ENV=(i)". In recognizing
“then”, another reduction by (3) takes place, and DECS
(for (ii)) is added to ENV resulting in “ENV =(i)+ (ii)”".
At the moment immediately before recognizing “else”,
DECS (for (ii)) is subtracted from ENV using the reduc-
tion by (5), and in recognizing “‘else”, DECS (for (iii))
is added to ENV using the reduction by (7). So, “ENV =
(i) +(iii)”. Thus, the range structure of “if statement”
in Algol 68 can be naturally described using (synthesized)
attribute, global entity and subrange feature.

6.5 Comparisons to other systems

In many compiler generators, such as attribute-
grammar based systems [10, 15] and transformation-
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grammar based one [12], generated compilers first build
a kind of attributed parse tree using the syntax analyzer
and then perform semantic evaluation on the tree.
Compared to our system, they tend to be slow in creating
the tree and in passing attributes through the tree.
There exist some systems [13, 14] where attributed
parse trees are not built by realizing them implicitly with-
in the framework of recursive descent compiling. Their
generated compilers are essentially made of a set of
procedures, and can handle global entities or tables as
we did in our system. In contrast to them, our system
has shown that a bottom-up implementation of implicit
attributed tree is also attractive on the foundation of
multipass parsing. Our realization of attribute grammar
is comparable to the above systems in its power and
efficiency, with removing delicate restrictions of top-down
parsing as regards grammar class.
7. Generator Efficient
Regeneration

Organization for Partial

We have organized the compiler generator so that

MASTER CONTROL

PR [PROGRAN

“pragmat part"|
PR

L LEXICAL i

"lexical RB of lexical
analyzer" analyzer
. LEXROUTINES
"lexical [MACRO PROCESSOR+ i RB of lexical
routines” FORTRAN PROCESSOQR routines
. GRAMMAR 1
"syntax and (SLR{1) PARSER GENERATOR} RB of syntax
semantics FIK [MACRO PROCGSSOR+ N analyzer of pass 1
of pass 1" FORTRA:l PROCESSOR R3 of semantics
. ACTION 1 of pass 1
"additional
information
for semantics
of pass 1"
. ROUTINES 1
"subordinate ACRO PROCI OR+ RB of subordinate
routines [FORTRAN PROCESSOR| ), routines
of pass 1" ¥ of pass 1
+GRAMMAR 2

"syntax and

(SLR{1) FAR GENERATOR] 1 R3 of syntax

semantics Lﬂ‘.‘i . analyzer of pass 2
of pass 2" FORTRAN PRQ OR < 38 of semantics

. ACTION 2 of pass 2
"additional
information
for semantics
of pass 2"

. ROUTIHES 2

"subordinate [MACRO PROCESSOR+ |— —— PB of subordinate
routines ORTRAN PROCESSOR| routines

of pass 2" of pass 2
. MAIN {
"main t MACRO PROCESSOR+ FB of main
progran” [FORTRAN PROCESSOR| program
i of PB of code
! optimizer generator
l generation-
COMPILER EB] EB of time ALIB
! | GENERATOR compiler
. PRELUDE Ve .
"run-time [CCRERATED COMPILER} RB's of compile=
prelude® time ALIB

? prelude
. PROGRAI -
"user program"} {GENERATED COHPILER]
. DATA
"data to user }
| program" §

(7] B8 of user program

e promaR Bl

(a)description (b) generation steps {c) interface files

Fig. 8 Modular organization of compiler generator.
*1=modified attribute grammar handler (syntax/
semantics separator--attribute to semantic stack trans-
lator), RB=relocatable binary, EB=execution binary,
ALIB=automatic call library.

Inclusion of the description in files is possible using
“.FILE=(file name and vol);” or “.INCLUDE (i)=
{file name and vol);"”.

Master control program activates only necessary genera-
tion steps, although it activates all generation steps in
this figure.

Generated compiler is shown in Fig. 9.
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the task of generating a compiler can be incremental,
by making the task divisible into efficient partial
(re)generation steps corresponding to each of the
description units.

Figure 8 shows the modular organization of the
compiler generator. The input to the compiler generator
consists of description units corresponding to each
compiler module. The “pragmat part” of the description
controls all generation steps by specifying, for example,
number of passes, compiler name, generate/not-generate
indication and parameter options for each description
unit. Note that OS-dependent parts of the description
are wholly confined in this ‘“pragmat part”.

The “master control program” activates only necessary
generation steps according to the above generate/not-
generate specification. In order to provide necessary
information for partial (re)generation, all interfaces
between generation steps, once generated, are automati-
cally preserved or updated in files called “interface files”.

8. Generated Compilers

8.1 Organization of generated compilers

Figure 9 shows an example organization of a compiler
generated by our compiler generator. It consists of
modules corresponding to each description unit. A
natural overlay structure between each pass, optimizer
and code generator is realized as a default unless other-
wise specified.

8.2 Intermediate language, code generator and optimizer

Although these subjects are described elsewhere,
we shall briefly present their outlines.

A machine-independent intermediate language, named
IL, aiming at production of optimized codes has been
designed [22). The intermediate language to be output

common_var

[main_program]

~coe

enerator

of

pass 1

subordinate

subordinate| [subordinate]
routines i

routines routines

of pass 1 of pass 2 of pass 3
source partially partially machine- relocatable
text parsed pars independent binary
intermediate intermediate intermediate machine

language codes

text text
(2nd text) (3rd text) text

Fig. 9 Organization of a generated compiler (three-pass case).
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by multipass parsing is not limited in any sense, but we
support IL as a standard for user’s convenience. The
language level of IL is kept low enough with excluding
peculiarities of particular machines. An IL statement is
made of a quadruple with one operator field and three
operand fields.

A code generator for a Japanese machine (FACOM
230-45S series) has been made with special care for
generality and portability [23].

An optimizer is under development [24, 25]. Its input
and output text are both chosen to be the intermediate
language IL so that the optimizer can be included or
omitted without affecting other phases.

9. Concluding Remarks

Starting from difficulties in processing inverted
appearances of definitions and uses of language con-
structs, we introduced the concept of multipass partial
grammar parsing. On this basis, we described a compiler
generator which generates compilers allowing multipass
parsing.

9.1 Remarks on multipass parsing

The adoption of multipass parsing not only has solved
substantial problems of single-pass parsing presented in
the introduction, but also has simplified compiler des-
cription which may present rather congested semantics
in single-pass compilers. For example, processing of the
famous “labels with block structures” in two passes has
reduced its program size to about half compared with the
single-pass processing where the troublesome handling
of links of label is required [26].

With respect to time and space of generated compilers,
one may imagine the multipass parsing to be more time-
consuming compared with single-pass parsing. However,
it has been shown that for a two-pass parser (not includ-
ing semantic evaluation) of XPL [7], increased CPU
time compared with one-pass parser is less than 59,
with about 209 of space reduced using overlay [5].

Next, we point out problems for future studies.
First, we note that formalism of multipass partial
grammar parsing is our original work, as far as we know.
Khabbaz [27] discusses multipass precedence analysis,
but his work is of theoretical interest making it impos-
sible to apply to partial parsing such as for collecting
declarations. However, our formalism seems to be of
too practical nature. More strict and mathematical
formalism should be further studied. Second, in the
present system, the compiler-writer must describe
partial grammar for each pass. One would note that,
given the whole grammar G and the goal symbol S;
of an i-th pass, G;, PREC; and SUCC;, are automatically
computable. Thus, we are studying a method for auto-
matically generating such description. However, note that
even if it is realized, the description of semantics would
still be dependent on partial grammar of each pass.
Third, the relation between partial grammar and addi-
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tional features (for catching range structures and label
definitions) still lacks uniformity in the present system.
Therefore, their unification is being investigated. Fourth,
it would be convenient if the compiler-writer could
select grammar class for each pass. We are now develop-
ing an LALR(1) parser with disambiguating rules to be
added in the repertoire of parsers.

9.2 Remarks on compiler generator

At the moment, we have two compilers currently being
developed using our compiler generator. One is for
a subset of Algol 68 [26] and the other is for a subset of
Ada [28]. Although not all characteristic features of our
compiler generator have been fully utilized, we believe
from experience gained so far that the design philosophy
was successfully realized as follows:

(1) Integrated and compact description of compilers
was designed. Especially, a modified attribute grammar
for syntax and semantics simplified the description, and
at the same time increased compile-time efficiency com-
pared with original attribute grammars.

(2) Compiler construction process was made flexible
by the partial (re)generation feature of the compiler
generator, and by the unification of compiler and
user/test program in the description.

(3) Careful considerations on machine-independence
are paid in our compiler generator, generated compilers
and object codes. The compiler generator and generated
compilers are written or generated in Fortran, mostly
in an Algol 68-style macro-extended Fortran. As for
object codes, a machine-independent language IL was
designed. At the same time, clear confinement of
machine-dependent parts is achieved in each software.
Namely, in the compiler generator, OS-dependent parts,
such as generation of commands in a job control lan-
guage, have been confined within the “master control
program”; in generated compilers, OS-dependent parts,
such as overlay commands to the linkage editor, have
been confined to the “pragmat part” of the description
and to the “master control program” of the compiler
generator. Thus, our system affords the user fine pos-
sibility of moving either his language description or his
generated compiler to a new machine.

Finally, we point out some problems for future studies.
First, more clear and useful description for syntax and
semantics should be further investigated. It correclates
to the uniformity problem between partial grammar and
additional features discussed before. Second, consolida-
tion of rich utility features will be necessary. For example,
unified handling of multipass error occurrences in
generated compilers will be required to make the system
a truly usable software tool. Lastly, we must have more
experience including transportation of the system, for
further improvements in future versions.
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