Improvements of Adaptive Newton-Cotes
Quadrature Methods

IcHizo NiNoMIYA*

The following three new ideas are introduced to adaptive Newton-Cotes quadrature methods.

(1) Refinement of error estimation.
(2) Relaxation of convergence criterion.
(3) Treatment of extraordinary points.

By virtue of these improvements, reliability, efficiency and versatility of the methods are largely enhanced.
The adaptive Newton-Cotes 9-point quadrature subroutine DAQN?9 incorporating these improvements is
described and its performances in comparison with well-known subroutines are shown.

1. Infroduction

An algorithm which computes an approximation S,
satisfying the condition

Ej f(x)dx—S

<&o»

for a given integral |® f(x)dx and an error tolerance &,
automatically subdividing the integral region and
determining sample points, is called an automatic
quadrature. There exist two types of algorithms, global
and adaptive.

A classic example of the global method is Romberg
integration. However it is a well-known fact that the
Clenshaw-Curtis method [1, 2] and the double exponen-
‘tial formulas of Takahashi and Mori [3] are more
efficient. These methods rely on some global properties
of integrands such as analyticity or at least smoothness
or periodicity, and distribute and increase sample points
uniformly in the region according to a certain prescribed
manner.

Adaptive methods, on the other hand, have the
common objective of adapting the density of sample
points to the local behavior of the integrand thereby
promoting computational efficiency. There are various
members of this type of method {4, 5]. However the
principal ones are those based on Newton-Cotes quad-
rature rules.

In this paper, the following three improvements to
adaptive Newton-Cotes quadrarures for the purpose of
extending their merits and largely enhancing their
versatility are proposed.

(1) Refinement of Error Estimation

Suppose that Newton-Cotes n+ 1-point rule has been
applied to an integral on an interval and an approxima-
tion S has been obtained. The usual way to estimate the
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truncation error is to bisect the interval, apply the same
rule to both of the subintervals, obtain another approxi-
mation S’ and examine the difference S’ —S. Obviously
the above procedure requires new function values at n
sample points.

It will be shown that, by virtue of the refinement of
the error estimation, only two additional samples are
needed.

(2) Relaxation of Convergence Criterion

In an adaptive quadrature, a convergence test should
be done separately for every subinterval. The problem
here is how to assign a local convergence criterion ¢ to
each subinterval corresponding to the overall criterion
g. The conventional way is to distribute ¢, over each
subinterval in proportion to its length. This is straight
forward and exact but it is also too pessimistic and
conservative. Instead, a progressive strategy of relaxing
local criterion is proposed in this paper.

(3) Treatment of Extraordinary Points

The integrals encountered in practical scientific and
technological calculations do not always involve analytic
functions. Sometimes integrals with discontinuous or
singular integrands are required. Therefore, it is highly
desirable for an automatic quadrature to have the
capability of processing such integrals.

Among global methods, double exponential function
type methods are known to be competent for treating
singularities situated at the ends of the integration region.
On the other hand, de Boor [6] gave such an ability to
his famous adaptive quadrature subroutine CADRE
which was constructed on the basis of the Romberg
integration method. This paper shows that the same is
possible for adaptive Newton-Cotes quadratures.

The subroutines AQNNSD, AQNN7D and AQNN9D
implementing adaptive Newton-Cotes 5, 7 and 9 point
quadrature respectively were developed for the program
library of Nagoya University computation Center [7].
Recently, the subroutine DAQN9Y, added facilities for
the input of relative error criterion and the output of
an estimated error to AQNN9D. It is registered as a
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member of the scientific subroutine library SSL-II of
the Fujitsu Company. Later in this paper the specifica-
tions (user interface) and outline of the DAQNY algo-
rithm will be explained. Furthermore, the results of
performance tests of DAQN9 conducted for Kahaner’s
21 test problems will be shown and contrasted with those
of several well-known subroutines.

2. Refinement of Error Estimation

Newton-Cotes rules are interpolatory quadrature
formulas which make use of equidistant mesh points of
the interval. These formulas are the most suitable for
adaptive automatic quadrature, because function values,
once computed, are stored and reused afterwards.
The rules using odd numbers of sample points are
especially favorable in that their orders of accuracy are
the same as those using one more sample point. Here we
confine our attention to 5, 7 and 9-point rules from a
practical viewpoint.

Now, let us consider an interval and a mesh of points
dividing it into 2n equal parts. A mid point is added to
each of the outermost subintervals and the points are
numbered as shown in Fig. 1.

Let Q be the exact value of an integral over the interval,
e be the truncation error, & be the half width of the
interval and f; be the function values at the point i,
i=1,2,---,2n+3.

Then, Newton-Cotes 2n+ 1-point rules and corre-
sponding error estimators, which are derived below, are
given as follows, where £, £® and f'? denote deriva-
tives of the order 6, 8 and 10 respectively at some
appropriate points of the interval.

(1) 5-Point Rule

h
Q=5 {1o+ fo)+32(f2+ f)+12f3) —e, @n

f(6)
€=15120 6615{15(f°+f6) 64(f, + f5)

+84(f,+ f)—70f3}.  (2.2)
(2) 7-Point Rule

h
0= 756 41Uo+ fo) +216(f2 + fo)

Lok )22 Y —e (23)
BT A 105+ fo)=S12Uf,+ 1)
1020600 9625 o 8 1 7
+770(f,+ f6)—825(f3+ fs)+924f,}. 2.4
(3) 9-Point Rule

0= Tz (989(fo-+ f10)+ SBB8(f + Jo) ~928(/+ /)

+10496(f, + fs)—4540fs} —e, (2.5)
3TRFUO 4736k
30656102400 ~ 468242775
x {3003(fo + f10) — 16384(f, + fo) +27720(f2 + fs)
—38220(f 5+ f7)+56056(f4 + f6)— 64350 f5}. (2.6)

e=
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Fig. 1 Arrangement of sample points.

The usual way to estimate the error e is as follows.
Let S(x,4) denote the approximation obtained by
2n+ l-point rule for an integral on the interval with
lower limit x and half width 4. S is given in the form of

S(X, h)=Q+e=Q+ch2n+3’

from the above formulas. In order to estimate e, we
bisect the interval and apply the 2n+ l-point rule to
each of the half intervals. Evidently, the results are
given by

S(x, h2)=Q, +¢,(h/2)*"*3,
and
S(x+h, h2)=0,+c,(h2)**3,

where Q, and Q, denote the integrals over the two halves.
Making use of the relation

o= o,+ 2,
and equating ¢, and c, with ¢, we obtain

2n+2

— phy2n+3
E—Ch z22n+2_l

x{S(x, h)—(S(x, h/2)+S(x+h, h/2))}. 2.7

It will be observed here that 2n additional sample must
be supplied to estimate the truncation error of the
2n+ 1-point rule by this method.

Now a little examination of the above derivation of
(2.7) reveals that it only utilizes the proportionality of
e to h?"*3 out of the totality of the error theory. As a
matter of fact, e is proportional to A2"*3 f(3**+2) There-
fore, e can be estimated by estimating f"*? directly
using 2n+3 sample values. In other words, two more
function values are sufficient.

It is almost evident from the principle of bisection and
symmetry that the additional sample points should be
a symmetric pair of mid points of 2 subintervals. But
there is still an indeterminacy concerning the choice of
the pair. Taking account of the excellent properties of
interpolation based on zeros of Chebyshev or Legendre
polynomials which have high densities near the ends of
interval and the advantages in treating end singularities,
the pair of the outermost mid points is selected.

Now, let D denote the numerical differentiation func-
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tional for the 2n+2—nd derivative which is a linear
combination of function values at the above mentioned
2n+3 points. Since D is symmetric, the number of
unknown coefficients is n+2. We apply the functional D

to the special functions x?*, k=0, 1,---, n+1, on the
interval [— A, 4] and obtain.
D(x*)=0, k=0,1,---,n,

D(x*"*2)=(2n+2)!

Solving these n+2 equations simultaneously, we can
determine the n+2 coefficients. The formulas (2.2),
(2.4) and (2.6) were obtained in this manner. In fact,
the equations may be solved very accurately by means
of multiple precision arithmetic. The exact solutions
may be reconstructed in the form of rational numbers
from the easily recognizable cyclic structures of the
numerical solutions.

Let us consider the saving of function evaluations
brought about by the adoption of the new error estimate.
Suppose that an algorithm A which uses the old error
estimate, and another one B which is the same as A
except that it uses the new error estimate, are applied
to the same integral. Assume further that the both
algorithms terminate with the same level of subdivision
everywhere. Then, the integral region will be partitioned
into the same number, say N, of subintervals each of
which contains 4n+ 1 and 2n+ 3 sample points including
the end points in cases A and B respectively. Accordingly,
the total numbers of sample points are 4nN+1 and
(2n+2)N+1 respectively. Thus, the rate of saving
is given by:

(2n+2)N+1~n+1
aaN+1 = 2n°

This formula takes on the values of 3/4, 2/3 and 5/8
correspoinding to the 5, 7 and 9-point rules. Although
the assumption that A and B pursue the same course of
convergence is not strictly true, it is probably true on the
average and the above values of the saving rate are con-
sidered to be rather realistic.

2.8)

3. Relaxation of Convergence Criterion

In a global quadrature, approximations are always
provided and tested for convergence for the integral as
a whole. In the case of an adaptive quadrature, on the
contrary, the convergence test must be performed locally
and separately for each subinterval. The problem here
is how to determine the local error criterion ¢ according
to the overall criterion g,. The obvious solution is to use
a proportional allocation. In this scheme, the local error
criterion ¢; for the i-th subinterval is determined by

&;=¢eoh;/ho, 3.1

where h, and A, are the half widths of the whole interval
and the i-th subinterval respectively. Suppose that
every subinterval passes the convergence test for the
criterion ¢;, then overall error E satisfies:

I. NINOMIYA

|E|=

N N N N
‘Zl e = i_Zl led = 2:1 &;=(go/ho) 'Z1 hi=¢4, (3.2)

and consequently the requirement:
|E| S 8. 3.3)

It is not rare that the inequalities appearing in (3.2)
and hence the inequality (3.3) turn out to be slack ones
with large discrepancies. When the integrand is oscil-
latory or when local approximations are refined by
subtraction of estimated error, the tendency will be
particularly pronounced. In short, proportional alloca-
tion is extremely conservative and devoid of positivity.

Kahaner has conceived the Banking Method [9].
Everytime the estimated error is compared with error
criterion the surplus is deposited in the bank and any
deficit is made up by with drawing from the bank.
The idea itself is attractive but its practical utility seems
dubious. In practical applications, estimated error is
not able to withstand such a rigorous additivity.

Thus, in so far as the infallibility to meet the error
requirement (3.3) is adhered to, there seems to be no
good method other than proportional allocation.
Observe, however, that no algorithm is ever infallible.
Indeed, for every algorithm, however ingeneous and
sophisticated, we can easily construct a problem which,
when handled by it, yields an erroneous answer [12].

In view of the above fact,

&;=¢£o(hi/ho) log, (ho/h) B4

is proposed in place of (3.1) in order to positively relax
error criterion for small subintervals. The reason the
relaxation factor log, (ho/h;) is used is that in the first
place it leads to a cautious strategy and in the second
place its computational cost is negligible. Unfortunately,
no adequate analytical or statistical theory concerning
the application of the new method has been conceived
as yet. Consequently, the merit must be judged exclusively
by experimentation. As far as the numerous experiments
worked out so far, there seems to be no negative evidence.
In the case of oscillatory integrals, it proves to be efficient
in preventing fruitless subdivisions at early stages thereby
saving function evaluations.

4. Treatment of Extraordinary Points

Consider an integral of a function well approximated
locally by a polynomial of a moderate degree. As the
process of bisection goes on, we eventually arrive at
a stage where the derivative appearing in the error
formula can be regarded as a constant. From then on,
further bisection divides estimated error e by 22"*3
while it halves error criterion ¢. (Here we neglect the
relaxation factor). Thus, the quantity e/¢ will be reduced
to 1/22"*2 times the last value. This property of e/e
indicating the rapid convergence of the 2rn+ 1-point rule
is displayed in a more straight forward manner by the
normalized error é=e/h.

Suppose now that the integration region contains dis-
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continuities and/or singularities. At the outset, it is
assumed that function values at singularities where they
are undefined originally, are replaced by an arbitrary
finite value, say, 0. In such a situation, the condition for
convergence will not generally be met. Consequently,
the bisection process goes on without limit and a series
of subintervals containing the same extraordinary point
in the interior or at end points will be generated. Assume
here that the point in question is located at one of the
points which divide the region into 2™ equal parts,
where m is a positive integer, then, from a certain stage
on, the point is the common extremity of the series of
subintervals. Without loss of generality, we may assume
further that the extremity is the left one and is the origin.

Now let us examine the behavior of the values é; of
normalized error in such a sequence of subintervals
{I;,i=1,2,- - -}. Since & when considered as a functional,
is linear and decreases rapidly for normal functions, &;
will eventually manifest genuine properties of the extra-
ordinary point.

4.1 Detection of an Extraordinary Point

(1) Discontinuity
Consider the case where the integrand f has a dis-
continuity J at the origin and is constant otherwise.

0)=a+3d,
fO)=c @n
f(X)=0a, x>0.
Then, since &(x) =0, we immediately obtain
3,=cy0, 4.2)

where ¢, is the coefficient of the function values at the
ends of interval in the error estimator. Thus, the sequence
{é;,,i=1,2,---} becomes a constant sequence.
(2) Logarithmic Singularity

Assume that

f0)=9,

S(x)=alogx, x>0, @3)

in the vicinity of the origin. Clearly, &, can be written as

2n+2
&= ;Zo . f27x)), 4.4
for appropriately chosen x;, j=0, 1,:--, 2n+2, where
xo=0. Inserting (4.3) into (4.4) and using the property
2n+2

&= Y ¢;=0,
j=o

we obtain
2n+2
g=cod+a Y c;logx;+ixc, log2. 4.5
=1
Thus, the sequence {&,i=1,2,---} becomes an
arithmetical progression with the constant increment
ace log 2.
(3) Algebraic Singularity
Assume that
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J0)=94,

fx)=ax?, x>0, (4.6)

in the vicinity of the origin. Inserting (4.6) into (4.4)
we have

. 2nt+2
&=cod+a2”? Y cpxh 4.7

i=1
Define the first difference Aé; by
Aé;=¢&;,,—¢€,
then, from (4.7), we obtain
2n+2

Ag=a27?PQ27P=1) ¥ c;xb. (4.8)
ji=1

Thus, the sequence {Aé;,i=1,2,---} becomes a
geometrical progression with the constant ratio 272,

Now we can summarize the detection of extraordinary
points as follows.

Examine the behavior the sequence {&;, i=1,2,---}
of normalized errors é=e/h for the sequence of sub-
intervals each of which is a half of its predecessor.

(a) If the sequence tends to a constant ¢, the common

extremity is a discontinuity with discrepancy 8.

d=c/cy 4.9

(b) If the sequence converges to an arithmetical
progression with the increment d, the common
extremity is a logarithmic singularity whose
coefficient is a.

a=d(c, log 2) (4.10)

(c) If the sequence of differences {Aé, i=1,2,- -}
converges to a geometrical progression with the
ratio r, the common extremity is an algebraic
singularity with the order p.

p=—log, r 4.11)
4.2 Evaluation of Integrals Involving Extraordinary
Points

When the existence of an extraordinary point is
recognized, the integral over the subinterval containing
it in one of the extremities can be evaluated analytically
as follows. Here, again, we assume for the sake of
simplicity that the point is at the left end and is the
origin x=0.

(1) Discontinuity

It suffices to correct the value f(0) by subtracting the
discrepancy 4 and use it in the quadrature rule.
(2) Logarithmic Singularity

Suppose that the integrand is expressed as

Jx)=wlog x+B+yx, 4.12)
in the subinterval [0, 2A]. The integral under considera-
tion is given analytically by

rh Sf(x)dx=2h{o(log 2h— 1)+ B+yh},
o
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which can be readily computed as

2h
j S(x) dx=2h{f(h)+a(log 2—1)}. (4.13)
0
(3) Algebraic Singularity
Suppose that the integrand is expressed as
Sf(x)=axP+pxP+ 4y, (4.14)

in the subinterval [0, 2A], where the order p>—1 is
assumed to be known. The integral over [0, 2A] is given
analytically by

[ oyinman {0 o7

1 42 +y}. 4.15)

In order to compute the right hand side of (4.15),
we may use three values f(0), f(#) and f(2h). Among them,
f(0) provides a problem. It would be simple and con-
venient to request that f(0) should be the value obtained
by replacing the principal part ax? with 0, i.e., f(0)=y.
In practice, however, it is not always an easy task to
determine the principal part of an algebraic singularity.

Here we follow the philosophy of automatic quadra-
ture to presuppose as little preliminary knowledge
concerning the integrand as possible and we decide to
allow an arbitrary deviation for the function value at
singularity.

Thus, letting 6 denote the deviation, we have

f0)=y+39,
Sy =k + BH7* 1+,
fQh)=a-(2h)P+ B-(2h)"* ! +1.
It is a simple matter to compute (4.15) by means of
(4.16), since ¢ is given by
(27P-1)¢,— Aé;
Q27 FP=Dey

(4.16)

o= 4.17)
from (4.7) and (4.8).

It must be emphasized here that the above explanation
of the treatment of improper integrals assumes that the
extraordinary point is located at one of the mesh points
dividing the integral region into 2™ equal subintervals.
Therefore, if necessary, variable transformations or
subdivision of the integral region must be performed in
order to transfer the extraordinary points to such mesh
points, e.g., the end point or the mid point. Furthermore,
it is important to protect the function values from a
loss of singnificance near the singularities in order to
ensure the precision in the treatment of improper
integrals. In this respect, it is advisable to move the
singularity to the origin x=0.

5. Adaptive Automatic Quadrature Subroutine DAQN9

In this chapter we describe the specifications and
outline of the algorithm of the adaptive automatic
quadrature subroutine DAQNY based on Newton-Cotes
9-point rule. See ref. [8] for details.

1. NINOMIYA

5.1 Purpose

Given the integrand f(x), the interval of integration
[a, b], absolute error criterion &, and relative error
criterion &, DAQN9 computes an approximation S
which hopefully satisfies the following condition.

5.2 Usage

A FORTRAN statement that may be used to initiate
DAQND9 follows: CALL DAQNS9 (A, B, FUN, AEPS,
REPS, NMIN, NMAX, S, ERR, N, ICON) where:

\S— j‘z f(x)dx

<max (s,,, £y

b
[ fx) dx

A---Input. Lower limit of integration region.
B---Input. Upper limit of integration region.
FUN- - -Input. Function subprogram for comput-
ing the integrand f(x).
AEPS- - -Input. Absolute error criterion &,.
REPS: - -Input. Relative error criterion é,.
NMIN: - -Input. Lower bound for the number of
function evaluations.
NMAX: - -Input. Upper bound for the number of
function evaluations.
S:--Output. Approximation for the integral.
ERR:--Output. Magnitude of estimated absolute
error of S.
N---Output. Number of function evaluations.
ICON- - -Output. Condition code for the quality of

result.

The program is coded in FORTRAN strictly in
conformity to level 7000 grammer, and ample caution
has been exercised to establish portability. The necessary
memory space is about 10 KB, it can be run on any
middle or large scale computer.

5.3 Outline of the Algorithm

Step - - - Initialization

Set the lower limit x, half width 4 and running approxi-
mation S as x=a, h=hy=(b—a)/2, S=0.

Initialize various variables and determine several test
criteria.

Evaluate the integrand at 9 equally spaced nodes
and 2 mid points of the outermost subintervals of the
interval [a, b] (see Fig. 1).

Step 2- - - Bisection and Stacking of Data

Bisect the current subinterval which is specified by
x and h.

Evaluate the integrand at 6 points which, when added
to 11 already sampled points, constitute the complete
set of 17 equidistant mesh points.

Compute the integral over the right half by the 9-point
rule and store the result in the stack together with
relevant function values, half width A4 and so on.

The integral is used as a part of the approximation S’
which is multiplied by the relative error criterion e,
for the purpose of the convergence test. It is also reused
later when the right half is treated.
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Proceed to Step 3 to treat the left half.
Step 3- - - Convergence Test

If the integral over the current subinterval is not
available (when we come from Step 2), evaluate it by
the 9 point rule. Evaluate the integrand at the outermost
mid points and estimate the truncation error e by means
of the formula labeled (2.6). Test e for convergence,
i.e., examine the inequality:

le] < max (e, &,|S"})- (h/ho) log, (ho/h).

Here S’ is recomputed everytime using the most recent
data.

If the inequality is satisfied, subtract e from the
integral and proceed to Step 7. Otherwise proceed to
Step 4.

Step 4- - - Examination for an Extraordinary Point

Return to Step 2 if / is larger than a certain allowable
limit which is determined from input data.

Proceed to Step 5 when 4 is smaller than a certain
allowable limit which is determined from input data.

Examine the existence of an extraordinary point at one
of the ends of the current subinterval.

Go to Step 6, if the existence is recognized, and return
to Step 2 otherwise.

Step 5- - -Reexamination for an Extraordinary Point

Reexamine the existence of an extraordinary point
with attenuated criterion for detection.

Proceed to Step 6 if it succeeds. Otherwise, give up
further treatments, accept the current subinterval without
convergence and proceed to Step 7.

Step 6- - - Analytic Treatment of an Extraordinary Point

Perform an analytic calculation according to the
category and characteristic value of the extraordinary
point for the integral over the current subinterval and
proceed to Step 7.

Step 7- - -Updating of the Running Approximation
and Retrieval of Data

Add the value of the integral over the current sub-
interval to the running approximation S.

Terminate the algorithm if the stack is empty. Other-
wise, take the necessary data from the stack and return
to Step 2.

6. Numerical Examples

Numerical experiments have been conducted on
Kahaner’s 21 test problems to investigate the perform-
ance of DAQN9 and compare it with those of well-known
established subroutines. The details of the experiments
are as follows.

The Computer- - - FACOM 230-75 of Nagoya Univer-

sity Computation Center

Language ------ FORTRANH-OPT2
Precision - - -+ 61 bitsx 18D
Error requirements- - <1073, 107%, 107° (absolute

error)
The adaptive quadrature subroutines selected for
comparison are de Boor’s CADRE [6], Kahaner’s QNC7
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[5] and QUAD [5], and O’Hara-Smith’s QABS [5, 10].
The experiment data for these subroutines are reproduced
from refs. [5] and [6].

Kahaner’s test problems are collected in Table 1.
From left to right, the table lists problem numbers, lower
limits, upper limits, values of integrals and integrands.
The results of comparisons are divided into three tables,
Tables 2, 3 and 4 corresponding to the error require-
ments. In each of the tables, magnitudes of absolute
errors and numbers of function evaluations are given
under the titles ERROR and N respectively. Asterisks
attached to errors indicate the failure to meet the error
requirement. In the bottom lines, percentages of success
for all the problems and average sample numbers are
added.

A little examination of the tables reveals the following
facts.

(1) As a whole, DAQN9 decisively excels on the
number of function evaluations. This is considered to be
mainly due to the refinement of error estimation.

(2) The weakness of adaptive quadratures for
oscillatory integrals is manifested by the general increase
of the number of sample points for problems 9, 13, 17
and 18. DAQNS9 is not free from this weakness either but
its superiority in sample point numbers is more pro-
nounced in these cases. This is possibly the effect of the
relaxation of convergence criterion.

(3) As it should be, DAQN9 and CADRE are
advantageous for the integrals with extraordinary points,
numbers 2, 3, 7 and 19, and this is reflected in the high
percentage of successes.

(4) Adaptive quadratures are good at problems with
peaks, numbers 14, 15 and 16. But the extremely difficult
problem 21 with three sharp peaks is exceptional.
DAQN9 along with others, behaves the worst for this
problem. Since DAQNY uses fewer sample points, the
sharpest peak situated at x=0.6 escapes completely
from the net of sample points.

From the above observations, the excellence of
DAQNY9 for Kahaner’s problems and probably for
many practical problems can be safely concluded.

7. Conclusion

A new, reliable, economical and versatile adaptive
quadrature has been constructed with the introduction
of three improvements to adaptive Newton-Cotes
quadrature methods.

Out of the tasks remaining for the future, only the
following are mentioned here: strategies to cope with
oscillatory integrals, the formation of an adequate theory
for the distribution of error tolerance and the treatment
of Cauchy’s principal value integrals.
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Table 1 The 21 test problems of Kahaner.

NO LL ut INTEGRAL INTEGRAND

(1) 0.0 1.0000000 1,71828182850+00 EXP(X)

«2) 0,0 1,0000000 7.00000000000-01 AINTCAMINL(X/0.3,1))

¢ 3) 0.0 1.,0000000 6.6666666667D-01 SEORT(X)

C 4) -1.00 1.0000000 4,7942822669D-01 0.92#COSH(X)-COS(X)

(¢ 5) -1.00 1.0000000 1.5822329637D+00 1/(X#u4+X242+0,9)

« 6) 0.0 1,0000000 4.0000000000D-01 X#SORT(X)

«7) 0.0 1.0000000 2.00000000000+00 1/S@RT(X)

( 8) 0.0 1.0000000 8.66972987340~01 1/(X##4+1)

¢ 9) 0.0 1.0000000 1.15470066900+00 2/(2+SIN(31,4159%X))

(10> 0,0 1.,0000000 6.93147180560=01 1/(¢14X)

(11> 0.0 1,0000000 3.79885493040~01 1/(CEXP(X)+1)

(12) 0.0 1,0000000 7.7750463411D-01 X/(EXP(X)-1)

(13) 0.10 1.0000000 9.0986452566D~03 SIN(314.1592X)/(3.141598X)

(14) 0.0 10,0000000 5.00000211170=01 SORT(50) #EXP (=50#3,14159#XuX)

(15) 0.0 10.0000000 1.00G0000000D+00 258#EXP(=-25%X)

(16) 0.0 10.0000000 4,99363802870-01 50/3,14159/(25008XuX+1)

(17> 0.01 1.0000000 1.12139569630-01 (SIN(50#3.141594X)/(50%3,141594X)) 682450
(18) 0.0 3.1415927 8.3867632338D-01 COS(COSIX)+36SINIX) +2#C0S(2#X)+38SIN(24X)+34C0S(38X))
(19) 0.0 1,0000000 ~1.00000000000+00 ALOG(X)

(20) -1.00 1.0000000 1,56439644410+00 1/(X##2+41,005)

(21> 0.0 1.0000000 2.10602735500-01 1/CUSH(100(X-0.2))ﬁ“Z*l/CUSH(IOO&(X-O.Q))*“bol/CDSH(lOOO"(X—O.bl)#ab

Table 2 Comparison of performance of adaptive quadrature routines for 21 problems of Kahaner.

ERROR REGUIREMENT 1.0e-03
CADRE ONC7 DA®N9 GUAD 8ABS
NOD EXACT ERROR N ERROR N ERROR N ERROR N ERROR N
(1) 1.71828182846D+00 1.4E-08 9 3.6E-14 25 5.2E-18 21 1.4E-14 37 2.2E-13 13

¢ 2) 7.000000000000-01 2.9E-04 53 1.0E-04 121 2.2e-06 141 6.9€-05 163 5.7€-05 141
( 3) 6.6666666€667D-01 9.1E-08 17 6.8E-05 49  1.4E-04 31 1.0E-C4 55 3.0E-06 77
( 4) 4,794282266890-01 3.1E-08 17 1.1E-12 25 3.5e-17 21 2.1E-14 37 1.4E-11 13
( 5) 1.582232963730+00 9.3E-08 33 4.1E-08 25 2.7€E-08 21 7.8E-10 37 T.9€E-07 13
¢ 6) 4.0000000G0000-01 5.4E~05 9 2.7E-06 25 1.6E-06 21 9.1E-07 37 5.1€-07 13
¢ 7) 2.000000000000+00 1.6£-04 33 4.8E-04 241 1.7e-10 91 3.8E-04 361 1.0E+03» 133
( 8) 8.669729873400-01 7.8E-07 9 1.9E-10 25 3.3E-11 21 6.0E-13 37 2.3E-09 13

¢ 9) 1.15470066904D+00 1.7E-07 183 5.9E-10 97 1.0E-05 81 5.8E-10 145 4.8E-07 149

(10) 6.93147100560D-01 7.2E-07 9 4.28-11 25 3.9E-13 21 3.9E-14 37 5.0E-10 13
(11) 3.79885493042D-01 2.CE-06 5 1.8E-14 25 3.3E-18 21 1.8€-15 37 2.6E-13 13
(12) 7.775046341120-01 4.0E~08 9 2.1E-14 25 2.2E~18 21 2.1E-14 37 1l.1E-14 13

(13) 9.098645256570-03 1.2E~07 1028 1.2E-01# 49  6.2E-07 321 1.1€-08 865 2.8E-08 573
{14) 5.000002111660-01 1.3E~06 62 2.4E-08 97 8.1E-10 71 1.1E-09 127 1.8E-09 85
(15) 1.000000000000+00 1.0E-06 86 1.3E-07 85 1.1E-06 61 1.9€-07 109 7.9E-09 85
(16) 4.993638028710-01 5.4E-06 81 2.5E-09 121 5.2E-07 91 9.1E-09 163 9.3E-08 109
(17) 1.121395696270-01 3.6E-04 512 1.1E-03% 165 T7.4E-04 101 4,1E-05 307 5.0E-04 149
(18) 8.38676323381D-01 1.4E~07 107 3.8E-07 85 5.4E-06 51 7.6E-05 73 2.9e-07 77
(19) -1.000000000000+400 4.1E=06 137 3.2€-06 217 4.6E-11 91 4.1€-06 307 2.6E-05 181
(20)  1.56439644407D0+00 T7.0E~-07 17 2.5E-08 25 1.1E-08 21 6.1€-07 37 6.6E-07 13
(21> 2.108027355010-61 1.1E~03« 108 1.1E-03# 97 1.1E-03% 61 1.1E-03&¢ 127 1.1E=-C3s 17

95% 120 86N 79 95% 66 95% 149 908% 93
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Table 3 Comparison of performance of adaptive quadrature routines for 21 problems of Kahaner.
ERPOR REWGUIREMENT

NU
1

2)

9
10)
11D
12)
13)
14)
15)
16)
17
18)
19>
20)

210

EXACT
1.71828182846D+00
7.000000000006C-01
6.66666666667D0=-01
4.79428226689D~-01
1.582232963730+00
4.000000000600~01
2.000000000000+00
8.669729873400-01
1.15470066904D+00
6.931471805600-01
3.798854930420-01
7.775046341120-01
9.09864525657D=-03
5.000002111660-01
1.00000006000D+00
4,993638028710-01
1.12139569627D~01
8.386763233810-01

=1.00000000000L+0G
1.564396444070+00

2.108027355010=-01

CADRE

ERROR N
2,8E~-10 17
4.8E-08 119
3.2e-08 33
4.8€-10 33
1.,0E-08 49
2.7€-07 65
6.9€~08 129
1.7e-08 17
3.3E-09 409
1.4€-08 17
2.5E~09 9
1.6€-10 9
4.2E-10 1449
4.6E-08 89
4.9E-09 140
1.0E-07 145
1.4€~09 1237
4.3E-09 177
1.3E~08 233
4.8E-09 33
1.1E~03% 189
95% 219

oNCT
ERROR N
3.6E-14 25
1.06E-07 241
6.0E-09 157
1.1E-12 25
3.6E-11 49
1.5£-08 61
4,8E-04% 241
1.9E-10 25
9.3E-09 289
4.26-11 25
1.6E-14 25
2.1E-14 25
9.9E-12 1525
8.1E-10 133
4.6E-10 133
6.8E-10 181
1.1E-03% 385
7.9€-10 181
8.5E-07 241
3.06-13 48
1.1E-03% 205
86% 201

1.0e-06
DABNY

ERROR N
5.28~18 21
3.3E-08 201
2.5E-12 111
3.5E-17 21
1.1E-11 41
5.1E~08 41
1.7E-10 111
3.3E-11 21
9.3E-09 221
3.9€~-13 21
3.3E-18 21
2.26-18 21
1.1€-10 641
3.4€-10 91
5.5€-10 81
1.6E-09 101
2.8£-09 491
1.7E-09 111
4.66-11 111
1.1E-08 21
1.18-03+ 111
95% 124

Table 4 Comparison of performance of adaptive quadrature routines
ERRUR REWUIREMENT

i)

1)
2)
3
4)
5)
&)
e
8)
kD)
100
11)
12)
13)
14)
15)
16)
mn
18)
19)
20)

21

EXACT
1,718281R2846D+00
7.0000000¢0000-01
6.666666666670-01
4.794282266890-01
1.582232963730+00
4.000000000000-01
2.000000600000+00
8.669729873400-01
1.154700669040+00
6.93147180560D-01
3.798854930420-01
7.775046341120-01
9.098645256570-03
5.,000002111660-01
1.000000000000+00
4.993638028710-01
1.12139569627U-01
8.386763233610-01

=1.000000060000+00
1.5643964640T0+00

2.108027355010-01

CADRE

ERROR N
6.0E-11 17
2.8€ 10 173
1.2E-10 129
1.3€-13 33
4.2€-12 129
2,7E-10 529
1.3E~10 625
2.1€-10 65
8.4€-12 785
3.6E~12 33
1.4€8-12 17
2,2€-12 17
3.8E~13 3505
1.2€-12 202
8.6E-12 215
l.3E-11 337
2.96-12 2329
1.5€-12 417
4.5E-09% 369
1.1€-09% 129
1.1€-10 661
0% 510

GNCT

ERROR N
3.6E-14 25
1.0E-07% 241
6.0E-12 289
1.1E=-12 25
1.56~12 97
4.26-12 133
4,8E-04% 585
1.2E-12 73
4.1E-12 697
1.7€-12 37
1.8E-14 25
2.1€-14 25
5.6E-13 3073
1.8E-13 241
5.0€-13 241
2.9€~12 397
3.6E-044 1345
8.6E~13 409
8.5€-07+ 421
2.8E-14 97
9.6E-11 709
81% 437

1.0€-09
DAGNG

ERROR N
5.2€-18 21
3.28-11 301
2.5€-12 161
3.5L-17 21
1.8£-11 61
8.96-12 91
1.76-13 311
5.0E~15 41
1.9€-~12 461
3.9e~13 21
3.3E-18 21
2,2£-18 21
6.3E-14 1271
9.4E-14 141
2,3E-13 131
4.8E-12 211
1,28-12 1031
1.1E-12 201
2.,9E-12 201
2.3E-13 61
1.1€-03% 221
95% 237

QUAD

ERROR N
1.6E-14 a7
7.2E-09 361
4.8E~09 217
2.1€~14 37
7.8E-10 37
2,9E-08 73
3.8E~044 361
6.0E-13 37
7.9€~10 397
3.9e-14 37
1.8E-15 37
2.1E-14 37
1.0E-11 1639
8.0E-11 163
9.56=11 145
1.2E-10 181
3.2e~-11 1009
5.TE-12 199
5.7E~07 361
6.1E~10 37
1.1E-03% 253
0% 269

for 21 problems of Kahaner.

QUAD

ERROR N
1.4E-14 37
7.26-09% 361
2.9€-12 361
2.1E-14 37
1.5E-12 73
5.0E-12 163
3.8E-04% 685
0.0 73
3.3E-13 757
3.9€E-14 37
1.8E-15 37
2.1E-14 37
5.6E-13 2773
7.5E-14 253
1.5€E=-13 2117
3.3E-12 343
3.3E-12 1999
1.0E-12 343
5.7€=0Tv 415
3.6E-14 73
1.0E~10 685
86% 465

0ABS
ERROR N
2.2E-13 13
S5.6E~C8 261
5.9E-09 145
8.0E-14 25
4.,0€-12 49
5.0E-10 65
1.0E+03# 89
1.1E~10 25
1,1E-10 313
5.0E~10 13
2,6E-13 13
1.1E-14 13
3.8E-11 1449
8.6E~11 109
3.3€-11 133
2.3€E-10 145
9.1E~11 829
1.3E-12 205
1.0€E+03# 105
5.0E-14 49
1.1€-032 197
86% 202

©ABS
ERROR N
2.8E=14 25
5.5E-11 381
4.4E~12 289
2.0E-14 85
1.6E-12 181
5.1E-13 137
1.0E+GC3a 89
7.1E-15 37
1.7E-13 893
1.6E~-13 49
0.0 25
1.1E-14 i3
5.7E-13 3197
T.1E-14 245
5.0E-14 281
9.4E=-13 397
3,3E-12 2025
1.1E-12 589
1.0E4030 85
5.7E=14 145
1.0E-10 633
90% 470
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