Hardware Verification at Functional Design Stage

FUMIHIRO MARUYAMA*

With the increasing use of LSIs in computers, there has been a greater demand for high reliability in logic
design. In order to respond to this demand, we have introduced formal design description into the functional
design stage by means of the hardware description language DDL, and have developed a simulator and a
translator, which extracts and arranges the information for circuit design from the DDL functional descriptions.
Here the research findings on the verification of logic design are reported. Although there are several publications
on research results in this field, they deal only with applications of the proof of theorems or the testing method
for programs.

In this paper, a new method of verification is presented that fully exploits the state transition representation
used conventionally in hardware design. The method described here detects the inconsistencies in the hardware
functional descriptions and verifies that the hardware meets the given specifications, using the information
extracted and arranged by the translator from the DDL functional descriptions in the state transition representa-
tion. This method is aimed basically at verifying the logic design of large-scale computers and provides an
effective verification algorithm for checking the interfaces between units, in which problems of erroneous design
are more frequent. Although this method is currently being evaluated using a conversational-mode test system,
it is considered to be extremely effective for detecting design errors that cannot be detected by ordinary simula-

tions, and for finding the causes of conditions that the designer never expected.

1. Introduction

With the advancement of computer circuits from LSI
to VLSI, changes in technology are becoming increasingly
complex, and the demand for high reliability in logic
design is becoming even more stringent.

Previously, after the specifications were determined,
a logic designer would prepare the functional design,
using block diagrams, state diagrams, time charts, etc.,
and then would design the gate levels based on the func-
tional design. However, because these methods do not
describe the system completely, there was always the
problem of communication between individual designers.
Another drawback was that the design could not be
checked until gate level simulation was completed.

Because of these problems, the authors adopted
hardware description language, DDL (Digital System
Design Language) [1] [2], at the functional design stage.
By designing the gate levels only after the functional
design has been checked thoroughly, design errors
can be detected early, subsequently increasing the
reliability of logic design. We also developed a simulator
that checks the operation, and a translator that auto-
matically converts the functional design into gate levels,
thereby performing the software supporting functions
for DDL[3].

Although reliability of the logic design will now be
dependent solely upon reliability of the functional
design (because the use of the translator makes gate
level design highly reliable), it is impossible to check

*Information Processing Laboratory, Fujitsu Laboratories
Ltd.

Journal of Information Processing, Vol. 3, No. 3, 1980

all possible situations during the simulations. Itis also
difficult to check interfacing between the units during the
simulations; these interfaces pose the greatest problems
in a large-scale system. Thus, to solve all problems,
it will be necessary to verify the designs at the func-
tional design stage using a method different from the
usual simulations.

Although several recently-published research papers
deal with hardware verification [4][5], they merely discuss
the application of theorem-proving methods or program-
testing methods. Unlike a program, which is in a
procedural form, it is natural to describe hardware in a
non-procedural manner. Therefore, even the application
of program-verification methods will be limited.

Here a new method of verification is proposed which
fully utilizes the conventional hardware design technique
of state transition representation. The following pages
depict this new method of detecting inconsistencies in
hardware functional descriptions and of checking if the
given specifications are met by the design, using the
information extracted and arranged by the translator
mentioned above.

This verification method is aimed mainly at
verifying the logic design of large-scale computers, and
is being investigated further to determine its practi-
cability. In particular, the application of this method to
checking the design of interfaces between units is being
studied because these are the most problematic portions
in a large-scale system design.

Section 2 discusses an example of inconsistency in
the functional design stage, and describes the basic
philosophy used in this work for checking it; that is,
reducing these and further steps to merely checking
whether a logical inequality is satisfied identically as

Hardware Verification at Functional Design Stage

follows.
(Logical expression)=0 (1.1)

Section 3 presents an algorithm for retracing the time
for checking the inequality (1.1), and Section 4 discusses
how this algorithm can be used to check if the given
specifications are satisfied. Finally, Section 5 presents a
brief discussion of the application of this method in our
test system.

2. Functional Design Description and Inconsistencies
Contained Therein

DDL is a language at the register transfer level for
describing the functions in a hardware design. Incon-
sistencies often exist in a hardware design description.
Verification that such inconsistencies do not exist will be
covered here.

21 DDL

The hardware description language, DDL, using the
state transition representation, will be described here to
the extent necessary for further discussions in this paper.
Figures 1 and 2 show the block diagram and the func-
tional design descriptions using DDL for a simple
example computer (SAMPLE 1). Table 1 lists the
symbols used in DDL.

The signal lines and terminals are simply called
Terminals. The operation of transferring the informa-
tion to the terminals from the information source (called
merely the Sources) is called the Connection. A
connection is taken to correspond to an ideal circuit in
which there is no time delay between the input and its
output (Fig. 3). Here, the expression |C1|T=AAB
means that 4 A B is connected to terminal T if C1 is 1.
The value of a terminal will be assumed to be 0 if the
value connected to it is not specified.

Devices with memory function, such as flip-flops or
their combinations, are called either Registers or Storage.
The operation of loading the information from the data

SAMPLE 1

SR e

Fig. 1 Block diagram (SAMPLE 1).

153

<SYSTEM> SAMPLE
<TIME> ch(lo) /e CLOCK */
<TERNINAL> START,NODE,ADRS(12) ,RRADY,0UT,DATAC1E).
<AUTONATON> MS: CLK: /« AUTONATON NS IS CONTROLLRD BY TLOTK LK #/
<STORAGE> MS(4096,16). /+ 16 BITS 4098 WORDS */
<REGISTER> ADR(12).VORK,7TR(3),CTW(3).
<STATES>
IDLR: /+ STATE IDLE /
| START | ADR~ADRS ,WORK+1,+RCY

H +IDLR
RCY: /- STATE RCY »/

| CTR l | ’RS‘D

READ: /v srus nun ./
OUT=1,0TR+0,
| NODE | DATA=NS(ADR) WORK+O ,~IDLE
~WRITE..
WRITE: /% STATE WRITE +/
NS(ADR)+DATA ,+¥CY.
wCY: /% STATE WCY =/

CTWCTW+1,
| €T¥i=1 | WORK+0,CTW+0,+IDLE
: “vCY. .

<END> .
<END> NS.
<AUTONATON> CPU: CLK: [+ AUTONATOM ZPU IS CONTROLLRD BY CLOZTK ALK %/
<REGISTER> IR(18) ,IAR(12).TNDATA(16),4C7(16),
CA,0C(2) JRUN ,CLR TNV STFL.
<STATES>
IPO: /+ STATE IFO +/
| RUN | STAH? 1,4DRS=IAR +IF1

IP1: Ad S ‘Tl IP1
| OUT | IR+DATA, IAR‘IH?‘I +IP2
: +IFy.
IF2: /% STATE IP2 */
IR(0:3):21 | START=1,ADRS=ADR,~LOADO.,
IR(0:3):=2 | START=1,ADRS=ADR,STPL+1,+STOREO.,

STOREO: /* STATE STORRO +/
| 0yT | +STORF1
+STORKO .
STORE1: /% STATE STOREL x/
DATA=ACC ,+STORR2.
STORR2: /% STATE STORE2 %/

’ | READY | STPL+0 ,+IP0
~STORR2 .

<END> CPU,
<END> SANPLE1.

Fig. 2 Functional design in DDL (SAMPLE 1).

Table 1 Symbols in DDL.

Meaning

Negation

Logical Product
Logical Sum
Equality

Terminal Connection
Register Transfer
State Transition

LTy <>1 |2

[If-Clause
H Else
* ¥ Comment
$ Qualifier for Automaton Names
A
B
ci—
;
P
02~>4*-<——*‘]::::
| Cl 1 T=AAB
| crt T=0D.

Fig. 3 Terminal and connection operation.

source (the source) into the registers (or the storage) is
called a Transfer. These transfers correspond to the
operation of a sequential circuit in which the input at
some clock period determines the output at the next
clock period, as shown in Fig. 4 (the clock periods can
be thought of as discrete instants of time). For register
GLFF in the figure, L is the input data, G is the input
condition, and P is the clock.

Any section of the hardware that contains a set of

154

A
12 .
GLFF

6l T
\ Ak
oo U il
Ot —Al-———f
I C1 I R—A
I c2l R—B,

Fig. 4 Register and transfer operation.

control functions is called Automaton. Every automaton
usually stays in one of its States, and the operations
described for that particular state will be executed in
that state. The operation of specifying the state into
which the automaton should go during the next clock
period is called a Transition.

The local conditions for the operations can be specified
by means of IF statements:

[Be| OP,.
or,
|Be| OP,; OP;.

The set of operations, OP,, will be executed when the
value of logical expression Be is 1 (true), and the set of
operations, OP;, will be executed if the value of Be is 0
(false).

At this point, the DDL entries will be briefly described.
The computer SAMPLE] comprises two automatons,
namely, MS and CPU, which are controlled by clock,
CLK. The terminals, storages, and registers are first
declared, and then the states of automaton MS and the
operations executed under those states are described.
The operations executed in the IDLE state are shown in
lines 8 to 10. These operations are as follows: if the value
of the START terminal is 1, then the value of the ADRS
terminal is transferred into the ADR register, the value
1 is transferred into the WORK register, and the state
will then change to RCY. If the value of START is 0,
then automaton will remain in the IDLE state.

The DDL entries that express the circuit behavior are
converted into information pertaining to the circuit
configuration in an operation called Translation. The
information so obtained is used for the gate level design.
During translation, all the operations for the terminals,
registers, and states will be grouped and edited according
to the conditions under which they are executed. This
translation, designed to assist the gate level design, also
has a major role in the method of verification to be
described here, because the translation list, not the
original DDL entry, is referred to during the verification.
Figure 5 shows a part of the result of translating the
entries shown in Fig. 2 for the SAMPLEI computer.
The operations transferring a value in register CTR are
the two lines underlined in Fig. 2. The operation of line
12 (executed in the RCY state), and that of line 16
(executed in the READ state), are grouped together
during editing and will appear in the translation result,
as shown by No. 8-1 and 8-2 in Fig. 5. The operations

CONNECTION CONDITION |

11(0:11) | CPUSTAR(0:11) | CPUSIFO A CPUSRUN

1- 2 | CPUSIR(4:15) | ((CPUSIR(0:3):=1) v (cpmml
| | €0:3):=2) v (CPUtIR(0:3):=3]
1 | IR(0:3):=4) v (CPU|

| $IR(0:3):=5)) A CPUTIF2]

SOURCE |

| CPUSSTORE1 |
SMS(NSTADR(0:11)) | IMODR A MSSREAD]

| 2- 11 (0:15)| CPURACC(0:15)
21

1 BIT(S) TKRMINAL

|1 | CPUtIFO A CPUSRUN |
[1 ((cpunn(u 3):=1) v (CPUSIR

(0:3):22) v (CPUSIR(0:3):=3
! 1) v ("PII"IR(O 3):=4) v (CPU)
| | 5IR(0:3)

§)) A CPUSIF2 1

| (0:2) l E'TR(O 2) + 1| MSTRCY
1 I MSSREAD 1

| NO. | NEXT STATE | LAST STATE
112- 1| MSSIDLE | MSTIDLE
112- 2] | MSSREAD
112- 31 | Nssecy
113- 1| MSSRCY | MSSIDLE
f13- 2| | MSSRCY
114- 11 NSREAD | NStRCY

| NSSNCY
| NSTWRITE

!
126~ 1 | (CPUSIR(0 : |

Fig. 5 Translation list (SAMPLE 1).

in Fig. 5, with no entries in the Condition column are
executed unconditionally.

2.2 Inconsistencies Included during Functional Design

The following types of inconsistencies can be present
in the descriptions of a functional design.

(i) The conditions for connecting (or transferring)
different sources to the same terminal (or register) are
not mutually exclusive.

Hardware Verification at Functional Design Stage

(ii) The conditions for changing from one state to
another are not mutually exclusive.

(iii) The logical sum of the transition conditions in
any one state is not equal to 1.

In (i), two or more values can be connected
(transferred) to the terminal (register) simultaneously.
In (ii) and (iii), the state at the next instant of time may
be either indeterminate, or two or more states. Those
kinds of inconsistencies are unlikely to be detected as
inconsistencies in the gate level designs. For example,
the functional design using DDL in Fig. 3 contains an
inconsistency of type (i) when C1 and C2 are not ex-
clusive, but this inconsistency will not be detected in the
circuit diagram, because this circuit design is the same
for the logically-consistent functional design.

ICLAT1C2] T=AAB.
|mCIAC2| T=D.
ICLAC2| T=(4AB)vD.

This is one of the reasons for necessity of design verifi-
cation at the functional design stage.

The following points should be checked to verify that
no logical inconsistencies are in the functional design
of computer SAMPLE! (see the translation list in Fig.
5). The condition for no type (i) inconsistency to be
present in the entries for the terminal ADRS is:

Conditions No. 1-1 and 1-2 should be mutually
exclusive, .1

where No. 1-1 and 1-2 indicate the operations in the
translation list. (This notation will be followed through-
out this paper.)
The conditions for a type (ii) or type (iii) inconsistency
to be absent in automaton MS in the IDLE state are:
Conditions No. 12-1 and 13-1 should be mutually
exclusive. 2.2)

The logical sum of conditions No. 12-1 and 13-1
should be 1. (2.3)

The checking of conditions (2.1) through (2.3) can be
easily transfomed into merely testing whether or not a
logical expression is identically equal to zero, as follows:
(Logical expression)=0. 2.4
That is, we can rewrite (2.1) as
(CPUSIFOA CPUSRUN) A (((CPUSIR(0: 3):=1)
v(CPUSIR(O0: 3):=2) v(CPUSIR(0: 3):=3)
v (CPUSIR(0: 3):=4) v (CPUSIR(0: 3):=5))

ACPUSIF2)=0, (2.5)
and both (2.2) and (2.3) as
START A -1START=0. (2.6)

The aim of this paper is to develop a generalized
verification algorithm that converts the verification of the
absence of internal inconsistencies (as well as the verifica-
tions to be described later) into verifying only expression
2.4).

155

The verification of (2.4) is carried out using the
various principles of Boolean algebra, such as A A 4=
0, and the following information:

Each of the automaton is always in one,
and only one state, 2.7
(A:=v)A(4:=v,)=0, (2.8)
where A4 is any terminal (register), and v, and v, are
different values. Condition (2.5) is verified using the
information provided by (2.7) and the fact that the two
states of automaton CPU are CPUS$IFO and CPU$IF2.
Condition (2.6) is self-explanatory. Most of the prob-
lems within a single automaton can be verified in the
above manner.
Next, the verification that there are no type (i) in-
consistencies in the terminal DATA can be simplified into
verifying the logical expression:

CPUS$STORE1 A "MODEAMSSREAD=0, (2.9)

where CPU$STORE] is the state of automaton CPU,
and MS$ READ is the state of automaton MS. However,
this expression cannot be verified using the information
provided by (2.7) and (2.8), because this problem ex-
tends over two automatons. Very often different auto-
matons are designed by different people and, hence,
design errors are very likely to be present in the interface
between two automatons. Thus, it is very important to
verify the designs of the interfaces between the auto-
matons, and the methods of verification presented here
is particularly effective for this purpose. The algorithm
used here will be described in the next section, in which
it is assumed that all the automatons are synchronized
to the same clock signals.

3. The Retracing Algorithm

When the verification extends over many automatons,
it may not be possible to verify expression (2.4) using only
the information provided by (2.7) and (2.8). In such
situations, we start with the assumption that the left
side of logical expression (2.4) is equal to 1 at some
point of time, and try to extract the inconsistency by
retracing the history backward in time. If the in-
consistency is found, then the verification of (2.4) will be
completed according to the methods of reductio ad
absurdum.

However, it is not advisable to retrace the time for the
entire history. For example, the necessary and sufficient
condition for one-bit register R to be set (the value in
that register should be 1) at a particular instant of time
is given as the following condition at the previous
instant of time,

(Condition for R to be set)
v{((R: =1) A 71(Condition for R to be reset))

since a register is capable of memorizing data. But if we
retrace the previous necessary and sufficient conditions
in time as above, the logical expression to be handled
grows very quickly with the time retraced and, con-

156

sequently, the verification may not be possible. Besides,
most of this data will not be pertinent to the problem at
hand. Hence, in this method, not all the necessary and
sufficient conditions are retraced, but only the ap-
propriate ones are altered into necessary conditions (this
is called reducing to necessary conditions, and does not
mean that an error is verified as normal). Because the
state representations are considered to be very important
in the problem of verification, the necessary and sufficient
conditions for the states (given in the translation list)
are retraced. We propose two such algorithms here. In
addition, we also discuss some fundamental theorems
of the processing of loops.

In the following, we consider the verification of two
automatons, 4, and 4,. ¥V, and V, denote the sets of all
the states of 4, and A,, respectively, andst 1 Ast2(st 1 €
V., st2eV,) is also taken to be an element (st 1, st 2)
of the direct product set ¥, x V,. The algorithm indicates
whether or not a logical expression of the type

vAC(ve V| xV,, Cis the logical expression), (3.1)
is false, as follows:

vAC=0. (3.2

3.1 Replacement

The operation of retracing the operational history in
time is realized by replacing each of the conditions
included in any logical expression by other appropriate
logical expressions. The conditions that are replaced
can be broadly classified into three types: terminal con-
ditions, register conditions, and state conditions.

Terminal conditions are the conditions that include
the terminals (excepting the external terminals that are
outside the system). Terminal replacements are the
operations of replacing the terminal conditions with
equivalent logical expressions (the necessary and
sufficient conditions for the terminal conditions at
that particular instant of time) by replacing the terminals
in the terminal conditions with the expressions cor-
responding to the source of that terminal. For example,
the terminal replacement for terminal T in Fig. 3 con-
sists of replacing terminal condition T (which can have
one of the values—0’ and ‘I’) with the logical expression
(A A BACl1)v (D A C2). Although time is not retraced in
the result by terminal replacement, the terminal con-
ditions must be excluded from the logical expression to
retrace the history, because the logical expression should
not contain terminals that have no memory functions.
(It is assumed that all storage devices have been clearly
declared as such, and that there are no terminal loops.)

The register conditions are the conditions that con-
sist only of registers. Register replacements consist of
replacing the registers that appear in the register con-
ditions with the logical expressions for the sources of
these specified registers, thereby obtaining the logical
expressions equivalent to the register conditions (cor-
responding to the necessary and sufficient conditions at

F. MARUYAMA

the previous instant of time for those register
conditions). For example, register replacement for
register R in Fig. 4 consists of extracting the expression
(AACH v (BAC2)v(RA(C] v C2)) from register con-
dition R (which can assume one of the values 0 and 1).

State replacements are the operations of replacing the
states with the necessary and sufficient conditions for
the automaton in question to enter that state. By carrying
out register and state replacements the logical expression
will be retraced in time by one interval.

3.2 Algorithm I

First we shall describe the algorithm that retraces the
time for only the states (Step 0-Step 3).

Step 0. .. Assume that logical expression (3.1) in the
verification is true. Next, proceed to Step 1.

Step 1 ... Eliminate the terminal conditions by carry-
ing out terminal replacements repeatedly. The verifica-
tion will be complete if the logical expression so obtained
is equal to 0. Otherwise proceed to Step 2.

Step 2...Force all conditions, other than state
conditions, to 1 (true). The result is a logical expression
of the form (which we shall call ‘the standard form’):

VIVOV s V(U Uy 0, U € VX V)
Next, proceed to Step 3.

Step 3... Carry out state replacement for all the
states appearing in the logical expression. The verification
will be complete if the logical expression so obtained is
equal to 0. Otherwise return to Step 1.

In Algorithm I above, the change to necessary con-
ditions is made in Step 2, and the time is retraced by one
interval in Step 3.

The logical expression obtained after the operations
of Step 1 to Step 3 on logical expression C, will be
denoted by np(C,) (necessary pre-condition). np(C,)
is the necessary condition at the previous interval of
time for condition C, to be satisfied at a particular
instant of time. Further, if npi(i=0,1,2,3,---) is
defined as follows:

np{(C)=np(np'~!(C,)) (iz1), (3.3)
np%C,)=C,, (3.4)

then, np’(C,) will be the necessary condition at i intervals
of time before, for the condition C, to be satisfied at a
particular instant of time. Once np'(C,)=0, then the
assumption that C, is satisfied at a certain instant of
time will be abandoned. Therefore, Algorithm I can be
used for verifying (3.2).

The execution of Algorithm I results in the formation
of a graph (tree) with the value of the summit point
being the elements of ¥V, x ¥, and 0. If v(eV, x V,) is
the root in Step 0, and if np(v) has the standard form
v, VU,V - VU, then the m points v, v,,- - -, v,, With
the respective contents are taken as the starting points
for subsequent operations. Next, for this new summit
point (leaf) #(#0), the contents of the elements of
V, x V, in the standard form of np(%) (these contents are

Hardware Verification at Functional Design Stage

taken as O if np(¥)=0) are taken as the new summit
points, and so on.

Since Algorithm I stops only when the verification is
successful, it is necessary to formulate the rules for
stopping the operations using the tree described above.

Termination Rule 1. . The verification will be com-
pleted (successful) if the contents of all the leaves is 0.

Termination Rule 2... The verification will be
stopped (failed) if an element of ¥, x V, appears twice
in the same path, because Algorithm I cannot be used
in such cases. Consider that an element of ¥, x V,, for
example v, appeared twice in the same path. In Algorithm
Iitis necessary to show v=0, but in this case, the problem
has returned to the starting point itself. Hence, this
verification cannot be made by Algorithm I, which is
the reason for Termination Rule 2. However, even when
the algorithm stops because of Termination Rule 2, it is
possible to provide the designer with useful information
regarding the counter example (such as when condition
(3.2) is not likely to be satisfied). Based on this informa-
tion, the designer can check for inconsistencies in the
design. :

The following theorem can be proved regarding the
size of Algorithm I.

Theorem: Algorithm I stops, at the most, after
|V1]-1V,| (the product of the number of states of the two
automatons) intervals of time have been retraced.

Proof: If there is a path that has a value other than 0,
even after retracing |V,|-|V,|(=|V; x V,|) intervals of
time, then there must be an element that has appeared
two or more times; otherwise, there will have to be a
(V,xV,yj+1th element of V,xV,. Hence, the
algorithm stops because of Termination Rule 2. Q.E.D.

As an example of applying Algorithm I, we consider
the verification of (2.9). The translation result of Fig. 5
will be referred to during this verification.

Step 0. .. CPUSSTORE! A "MODE A MS$READ,
3.5)
Step 1... From No. 3-1 in Fig. 5,
CPUS$STORE1 A 7CPUS$STFL AMSSREAD,
(3.6)
Step 2 ... Making -1CPU $STFL equal to 1,
CPUSSTORE1 A MSS$READ, 3.7
Step 3... From No. 14-1, 40-1,
CPU3SSTOREOA OUT AMSSRCY
A(CTR(0: 2):=1), (3.8)
Step 1... From No. 4-1,
CPUS$STOREOA MSSREAD AMSSRCY
A(CTR(0: 2): =1). 3.9

Using the information from (2.7) that MSSREAD A
MSS$SRCY =0, it is seen that (3.9)=0 and, hence, the
verification of (2.9) is completed. There is no type (i)
inconsistency in terminal DATA (bidirectional bus)

157

Fig. 6 State diagram (SAMPLE 1).

between CPU and MS.

The above verification using Algorithm I was quite
easy, because (2.9) was based on the mutually-exclusive
nature of the STOREI state of automaton CPU and the
READ state of automaton MS, and also because the
two automatons were synchronized via terminal OUT
(Fig. 6). It is considered that Algorithm I will be effective
in many cases, because the automatons generally are
synchronized via the terminal signals.

3.3 Algorithm I

In some situations, the verification may require time
retracing for registers also, because the synchronization
between automatons is obtained through registers, etc.
We now describe an algorithm that also retraces the time
for registers. However, the time retracing will be done
only for those registers that are specified by the designer,
because the designer can very often identify the registers
that are related to the verification problem at hand.
This algorithm (Step 0 to Step 3) is a more accurate
version of Algorithm I.

Step 0 and Step 1. .. Same as Algorithm I.

Step 2. .. All conditions, other than the state con-
ditions and the register conditions that consist of only the
specified registers, are set as 1 unconditionally.

Step 3 ... Carry out state and register replacements
for all the state and register conditions, with only the
specified registers appearing in the logical expression.
The verification will be completed if the resulting logical
expression is equal to 0. Otherwise, return to Step 1.

(End of Algorithm II)

As in Algorithm I, if the logical expression obtained
after steps 1 to 3 from logical expression C, is denoted by
np(C,) (generally, this np(C,) is under stronger restric-
tions than the corresponding np(C,) in Algorithm I),
and if np!(C,) is defined as in (3.3) and (3.4), then for C,
to be satisfied at some instant of time, np'(C,) is the
necessary condition that should be satisfied at i intervals
carlier. Therefore, (3.2) also can be verified by this
algorithm for the same reason as for Algorithm I.

158

3.4 Processing of Loops

If the logical expression obtained by time retracing
from logical expression C(=0) is such that

np(C)=Cv C,, (C, is a logical expression)
then
np(C)=Cv C,
(i=1,2,3, ---; C;is a logical expression) (3.10)

and no value of i can be found for which np/(C) is
equal to O; hence, the verification appears impossible to
complete.

The processing often falls into such loops when time is
being retraced. The following is a theorem related to the
procesing of loops.

Theorem: If

np(C)=(C; A C3) v G5,
(C, and C; are logical expressions)

and the designer can explicitly state that a logical con-
condition C, was satisfied for at least one earlier interval,
where C, is such that

C,AC,AC,=0, then C,=0if C;=0.

Proof: Since C3=0, np(C,)=C, A C,, and np*(C,)=
np(C, A Cy). Since np(C, A C;)>np(C,) Anp(C,) from
the definition of np, we have

np?(C,)=>np(C,) Anp(C;)=C; A C; Anp(C,).
Further,
np!(C;)>C; AC, Anp(Cy) A - - - Anp' "1(C))
(i=1,2,3,--).
From C,AC; A C,=0,
npi(C,)>1C, (i=1,2,3,--).

Therefore, if it is assumed that C, is satisfied, the state-
ment given by the designer will be contradicted.

. C, =0 Q.E.D.

If the conditions of the theorem are satisfied, then the
verification of C, =0 will be reduced to the verification
of only C;=0.

In this section the algorithms which carry out the
verification by retracing time were described. These
algorithms can be used to verify the design of interfaces,
which are usually the most important parts of the
verification in large-scale systems.

Because these algorithms do not retrace time by follow-
ing the necessary and sufficient conditions completely,
the verification may sometimes fail because of the
information that was discarded. Therefore, the selection
of information is very important (of course, an error will
never be verified as normal, irrespective of this selection
of information), and this selection requires considerable
knowledge of the design. On the other hand, because

F. MARUYAMA

some information will be provided about how the
subsequent verification is to be made even when the
verification failed, it always will be possible to repeat
the verification accordingly.

4. Verifying If the Basic Specifications are Met

In this section verification of the functional design
whether or not it satisfies the basic specifications is
discussed. An example is taken to show that even these
types of verification can be reduced to those handled
by Algorithm I or Algorithm II in the form of a logical
expression. First, the basic specifications are given for
the computer that is being designed in this example, and
the design model for that computer is given in terms of
DDL entries, then its verification is reduced to that of
the type for (2.4). The verification of (2.4) is carried out
by Algorithm II, thereby verifying whether or not the
basic specifications have been satisfied.

4.1 Basic Specifications and Functional Design

The computer designed and verified in this example is
a store-through type. The CPUs (Central Processing
Units) in most modern large-scale computers contain
buffer storage (there are small-capacity, high-speed,
storage devices for adjusting the speed difference between
the main storage and the CPU). In the store-through
method, fresh data from the channel (the unit for
exchanging the data between the I/O units and the
storage) is stored only in the main storage (the cor-
responding old data in the buffer storage will not be
updated). If the CPU tries to fetch the old data in the
buffer storage, data will be moved into the buffer storage
from the main storage. In such store-through systems,
the CPU must be designed so that it always uses the most
recent data.

The block diagram, the DDL functional design, and
the translation list are shown in Figs. 7, 8, and 9, respec-
tively, for the model computer design SAMPLE2, for
which a part of the specification is that the CPU must
always use the most recent data. For the sake of sim-
plicity it is assumed that both main storage, M, and
buffer storage, BS, have lengths of 1 word each, and the
only processings by CPU that are shown here are the

SAMPLE 2
CPU MEMORY
DATAAY
5 T MEMAY e
Lo CHTOMEM
BUS 16| [1
LS = [16
0 5 RS
BS
M
P
’ STORE |
‘& - .
_ MOEN |
INVALID

Fig. 7 Block diagram (SAMPLE 2).

Hardware Verification at Functional Design Stage

<SYSTEM> SANPLE2:
<TINE> P(100). /#+ CLOCK #/

<ENTHUVCP) DATAAV ,CHTOMEM (16) . /« TERMINALS FRON OQUTSIDF =/

<REGISTER> OP(16).

<TERMINAL> MEMAV,8US(16) ,STORE MOVEIN.

<AUTOMATON> CPU: P: [+ AYTOMATON CPU IS CONTROLLRD BY CLOCK P =/
<REGISTER> BS(16) ,INVALID.
<STATES>

: /* STATE 4 w/

R murva STORR &/
JSTORF=1,+

1]/ FPT/‘H */

I Ivvuln | /- MOVE-IN #/

OVEL

. /t FETCA OPRRATION IS NOT DESCRIBED */
| 1(0P(0:1):20) A 1(0P(0:1):=1) |
/- OPRRATIONS ARE WOT DESCRIBED EXCEPT STORE AND FRTCH +/

i ‘A..
8: /* STATE B »/
INVALID*0,85+8US ,+A.
<END> .
<END> CPU.
<AUTOMATON> NENORY: P: /« AUTOMATON MRMORY IS CONTROLLRD BY CLOCK P =/
<REGISTER> M(16).
<STATES>
b: /% STATE D »/
NENAV=1,
STORE | <K..
MOVEIN | ~P.
~STORE A NOVEIN | ~D.
/* STATE £
DATAAV | /= clAIMRL STORR «/
N+<CHTOMEN ,+D
i R,

F: /% STATE F »/
BUSsN,+D. [+ MOVE-IN /

<END>.
<END> NEMORY.
<END> SAMPLEZ.

Fig. 8 Functional design in DDL (SAMPLE 2).

channel-store (data transfer from the channel to the main
storage) and the data-fetch from the buffer (the instruc-
tions are assumed to be transferred from an external
source into register OP). When a channel-store
instruction is given, 1-bit register INVALID will be set,
thereby invalidating the contents of the buffer. If a fetch
operation is made while the INVALID bit is on, the
data is moved in, and the INVALID bit will be reset.
Because the CPU executes these operations successively,
the design of Fig. 8 can be considered to satisfy the
specifications. It is verified in the following.

The fetch operations are made when the CPU state is
A, terminal signal MEMAYV is on, and register INVALID
is off. Consequently, the condition BS=M should be
satisfied if the expression 4 AMEMAV A Z"INVALID
is true. Here, the specification can be expressed as;

(4 AMEMAV A 7INVALID)>(BS=M). (4.1)

Therefore, the verification of whether or not the design
of Fig. 8 satisfies the specifications is reduced to verifying
the expression (4.1). In fact, we shall verify whether or
not the converse of this expression is identically false;
that is, check if

AAMEMAYV A 7 INVALID A (BS£M)=0. (4.2)

Thus, the verification of whether or not the basic
specifications are satisfied is reduced to verifying (4.2),
which is of the same form as (2.4).

4.2 Verification by Algorithm Il

Verification of (4.2) will be executed by applying
Algorithm II. Among all registers, only INVALID, BS,
and M will be specified, and the algorithm will retrace
the time for them also. The translation result of Fig. 9
will be referred to during the verification.

Step 0. ..

AAMEMAV A 7 INVALID A (BS £ M). @4.3)

159

| CPUSINVALID A (OP(0:1):=1) A CPU<A|
1 | | | A MEMAV |

RA[IGP |SOURCE |

I - 11 (0) [| (0P(0:1):

NEXT STATE |

|
D | 1STORE A "NOVEIN |
|
i

D |
1E | pATAAV
| F |
1 9- 1168 | b | STORR 1
1 9- 21 | & | "DATAAV |

|
112- 11 4 (] | (0P(0:1):=0) A m"uv |
112- 2] | 4 | WENAY 1
l12- 3} | a | 7((0P(0:1):=0) v (OP(0:1|
| | ! 1 1):=1)) A MEMAV |
112- u] 1A | 2CPUSINVALID A (OP(0:1) 1
1 | | | :=1) A MEMAV |
112- 5| | 8 | |
113- 11 8 | a | CPUSINVALID A (0P(0:1): |
| I | | =1) A MENAV

Fig. 9 Translation list (SAMPLE 2).

Step 1. .. From No. 2-1 in Fig. 9,

A ADAINVALID A (BS#M). 4.4
Step3...

DOvOVRAVOVOV®E. 4.5)

Expressions @ to ® are the following:

DO=AADA(OP#£0)A 7INVALID A (BS#M),
@=AAEADATAAV A 11 INVALID

A (BS#CHTOMEM),
@=AAFAINVALID A (BS#M),
@=BADABUS#M),
®=BA EADATAAV A (BUS# CHTOMEM),
®=BAFABUS#M).

On the other hand, AAF, BAD, and BAE are
shown to be equal to 0 by applying Algorithm I, and
@, @, ®=0. Therefore, the algorithm will be applied
to ® v @ v ® from now.

160

Step 1... From No. 1-1,
OVOVBAFAM#M)=0D V. (4.6)

Now, considering (4.4), it turns out to be possible to
apply the theorem in the preceding section to this case,
with:

C,=AADAINVALID A (BS# M),

C,=(0P0),
C;=AAEADATAAV A 7INVALID

A (BS#CHTOMEM),
C,=INVALID.

This is because, at the starting time of the computer,
the buffer storage is empty, and register INVALID is
loaded with 1 (for simplicity this manipulation is not
given in the original DDL description in Fig. 8). There-
fore, verification of (4.2) is reduced to that of:

AAEADATAAV A 1 INVALID
A(BS#CHTOMEM)=0. (4.7)

Step 2. .. applied to

AAEADATAAV A INVALID
A (BS CHTOMEM),
AAEA-INVALID. 4.8)
Step3...

(AA EADATAAV A 7INVALID)
v (BA EA1DATAAY). (4.9)

The theorem can be applied to this case again (with
C,=INVALID, again). Considering BAE=0 (by
algorithm I),

AAEAINVALID=0,
is obtained. Hence, the verification of (4.2) is completed.
.. (AAMEMAV A 1INVALID) > (BS=M).

This example shows that if the basic specifications can
be given in the form of logic expressions, the verification
of whether or not they are satisfied by the design can be
carried out by applying the algorithms in the preceding
section after reducing it to the verification of (2.4).

5. Test System and Practical Systems

A conversation-type test system was built using a
minicomputer to verify (2.4) with the information
of (2.7) and (2.8). The software is structured to reference
the information provided by (2.7) and (2.8) and is
centered on an algorithm that determines whether or
not the given logical expression is a tautology according
to propositional logic. The functional designs using DDL
of large-scale computers were checked using the above
system. The CPU functional design has about 30 K
gates, the DDL descriptions require about 10 K steps,
and there are four automatons, each having ap-
proximately eight states. This DDL program was trans-

F. MARUYAMA

Neep TiMe RETRACING

EXCLUSIVENESS OF STATES

RemvDathin2) =0 100%=228 CONDITION PAIRS

48

Fig. 10 Classification of exclusiveness

lated by the DDL translator in a large-scale computer
(M-180II). Using this translation result, it was verified
whether or not there is any type (i) inconsistency (des-
cribed in Sec. 2) among the 228 condition paris in which
two different values are coupled (transferred) to the same
terminal (register). The following results of this classifica-
tion are shown in Fig. 10.

(1) Those verified by (2.7)

(2) Those verified by (2.8)

(3) Those verified by BA—1B=0 (B is a logical
expression)

(4) Those for which the verification requires time
retracing, because the conditions extend over
many automatons.

Although verifications of type (4) are few, they are very
important, as well as very difficult. About half the
verifications of type (4) have been successful in the test
system, but some uncertain conditions still remain.
These are the locations where the design was based on
the different durations of time required for the different
processing carried out in parallel. Although the
verification of portions related to such parallel
processing, or pipeline processing, can be considered to
be within the scope of the methods described up to now,
there are problems in our small-scale test system, such as
storage capacity. When building a practical system, it is
essential that a reasonably large-capacity storage be used
for the list processing related to the analysis of the
logical expressions, and that the list processing be
carried out properly. In addition, the storage required
is likely to be reduced by processing the tree described
in Sec. 3 with the priority based on the depth, rather
than by processing the entire logical expression at the
same time. Furthermore, it may be essential to build a
data base to efficiently store the translation result from
which the logical expression to be substituted can be
obtained at high speed during condition replacement.

6. Conclusion

In this paper a hardware verification method based
on the state transition representation has been proposed.
This method uses the information gathered by the DDL
translator (which has already been developed), and it
has been shown that this method is suitable for the

Hardware Verification at Functional Design Stage

verification of large-scale computer designs. Also, two
algorithms have been presented that are very useful in
verifying the interfaces between units, such interfaces
being most likely to have design errors.

The methods presented here are currently being
evaluated using a conversational-mode system, and it is
proposed to make the system extremely effective for
detecting design errors that are not detected by simula-
tions, and for determining the causes when some con-
ditions occur that were not foreseen by the designer.
We plan to develop a practical system based on these
results and to study further the methods of verification.

Finally, the author wishes to express his deep sense
of gratitude to Mr. Miyakawa, Manager of his Informa-
tion Processing Laboratory, for his kind advice, and to
Mr. Uehara, Mr. Kawato, Mr. Saito, and many others

161

in his laboratory for their valuable encouragement and
comments. The author also wishes to express his heartfelt
thanks to Mr. Tsuchimoto, Mr. Tokura, and other
designers for their practical advice and help.

References

1. DuLky,J. R. and DIETMEYER, D. L.: A Digital System Design
Language (DDL), IEEE Trans. on Comp., Vol. C-17, No. 9,
pp. 850-861 (1968).

2. DIeTMEYER, D. L.: Logic Design of Digital Systems, p. 800,
Allyn and Bacon (1977).

3. Kawaro, N., Sarro, T., MARUYAMA, F. and UEeHARA, T.:
Design and Verification of Large Scale Computer by using DDL,
Proc. 16th Design Automation Conference, pp. 360-366 (June
1979).

4. WAGNER, T. J.: Hardware Verification, Ph. D. dissertation,
Comp. Sci. Dept., Stanford Univ. (Sept. 1977).

5. DARRINGER, J. A.: The Application of Program Verification
Techniques to Hardware Verification, Proc. 16th Design Automa-
tion Conference, pp. 375-381 (June 1979).

