A Theory and Methods for
Three Dimensional Free Form Shape Construction

MaMoruU Hosaka* and FumiHIKO KIMURA**

This paper describes a new mathematical theory for expressing three dimensional free forms of curves and
surfaces, and also methods for application in computer aided design with the results obtained from the theory.
First, generative expressions for shape segments of curves and surfaces are deduced from an assumption that
a shape segment exists within the smallest convex hull spanned by the control points of the segment. These
expressions have simple construction and are easy to be manipulated. Then, shape synthesis and control by
partitioning, order raising of a segment and/or by smooth connection of segments, are explained with the
use of control points. Tangents, osculating planes, torsions and curvatures at any points on curves or surfaces
are simply expressed analytically as well as graphically by the local control points of the shape. As for the
shape synthesis by connection, detailed discussion and design methodology are given, especially for non-regular
patch connection. Equations for vector interpolation with smooth and natural transition are deduced. A curve
constructed from the parametric B-spline curve segments is proved to be a special case of this interpolation.
This theory and its application methods aid man’s comprehension and visualization of three dimensional
shapes and control of their geometric characteristics, and accordingly they are useful for interactive shape

design and geometric model construction.
L]

1. Introduction

In computer aided design and manufacturing of three
dimensional shapes, a mathematical description of
objects to be designed is required in order to store their
data of shapes, to calculate their characteristic values and
to display their shapes. When objects have free form
shapes, their mathematical expressions usually become
complicated owing to their esthetic and manufacturing
requirements to be satisfied. Moreover, they must
easily be manipulated and calculated in accordance with
designers’ intention or engineering practices.

So far, various approaches to this problem have been
published [1], but none of them have met fully the various
requirements in designing. For example, S. Coons’
patch expressions [2] are famous, but it is difficult in
shape control. In the Japanese car industries, Hosaka’s
approach [3] has been used because of its ability in good
interpolation and smoothing. P. Bézier introduced the
concept of a control polygon [4)], edges of which are
directly related to the shape of a curve to be designed.
The generated shapes have good characteristics for
practical use, but as his general expression is difficult
to be manipulated, its uses are limited. R. Riesenfeld
proposed the B-spline construction for shape expression
[5] with its nodes taken as vertices of the control polygon.
Though use of the parametric B-spline is good when the
control vertices are given, it is not always satisfactory
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when passing points of a curve are specified in advance.
As Bézier’s or B-spline method does not have a general
design methodology, they are generally used but only in
design of ordinary shapes, and there are still unsolved
problems even in practical applications [6, 7).

In recent years, owing to decrease of computing cost
and increased competition in manufacturing industries,
CAD and CAM have been considered even in small
companies. And rationalization of design and man-
ufacturing of free form shapes has been strongly hoped
for. In order to respond to their demands, we re-examined
problems in these fields and recognized the importance
of establishing a consistent general design methodology
of free form shapes for CAD and CAM. For this purpose,
we developed a new theory of free forms, which promotes
designers’ understanding of three dimensional properties
of shapes, and supports to establish various design
methods of free forms. The features of our theory and
methods are as follows.

(1) Simple forms of mathematical expressions.

As the old theories give complicated mathematical
expressions for free form shapes, it is difficult for
designers to manipulate and interpret them in a creative
design. In order to grasp object properties visually, we use
the concept of control points for manipulating a shape
segment. Our new expressions have simple mathematical
forms and are deduced from the practical assumption
that the generated shape occupies inside the smallest
convex hull which is spanned by the control points of
the shape. It is proved that this simple expression for a
curve segment is the same as the complicated Bézier’s
general curve expression. The control points correspond
to the vertices of Bézier’s polygon. These simple expres-
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sions are especially useful for description and construc-
tion of free form surfaces.
(2) Controllable geometric characteristic values.

Tangent, torsion, osculating plane, curvature of a
space curve and tangential plane, Gaussian and mean
curvature of a surface at any points of shapes can be
simply expressed with local control points and easily
visualized. Usually these values are difficult to be ob-
tained, but with our method they can be drawn even
graphically, so that man can easily grasp the geometric
features of the shape and control these values.

(3) Various methods for design and control of shapes.

Old theories did not always provide a suitable applica-
tion method, but ours have several control or synthesis
methods, such as global, local and fine control, and con-
nection of shapes. Control points of a segment can be
increased by partitioning or order raising of the segment.
The theory also gives methods of satisfying various
externally specified design conditions.

(4) Creation of forms with characteristic features.

The main purpose of using free forms in design of
shapes is to make the shapes attractive. Old theories are
not suitable for expressing these characteristic shapes.
In them, neighbouring patch shapes cannot be quite
different for smooth connection, and shape modification
does not correspond to designer’s intuitive methods, and
unwanted undulation is apt to occur. Our methods
permit non-regular patch connection for constructing
shapes with characteristic features.

(5) Use of effective interpolation formulas.

In our methods, we do not use values which are
difficult to give, such as derivatives with respect to
parameters. Instead, we use geometrically defined values,
such as control point positions, tangent directions or
radii of curvatures. When these values are not explicitly
specified, they can be estimated by solving the vector
interpolation equations which are deduced from the
theory. Accordingly, the curve synthesis by connection
with given passing points does not produce unwanted
inflexions, and values of torsion of a surface at nodes can
be estimated for smooth suface segment connection.

(6) Completeness as geometric models.

As the older theory and methods can be applied only
to regions where shapes are simple, special shape regions
are left to manual processing. Accordingly, it is difficult
to treat automatically various processes which are
required in design and manufacturing. With our methods,
whole shapes can be expressed in consistent manner
and can be stored as geometric models of the correspond-
ing real objects, so various data which are required in
interference problems, cutter path generation, engineer-
ing drawings, or assembling, can be produced by process-
ing the stored models.

As described above, our theory and methods are
suitable not only for computer applications, but also
for manual processing of free form design. Even with the
limited space and the simple explanation figures, rich
contents of this paper are due to simpleness of our

expressions and to ease of their manipulation.
2. Control Points and Shape Equations

The simplest shape segment —a line segment— is
defined by its end points P, and P,. We can consider
that these two points are the control points of the shape
segment, and the line segment can be expressed as

Ro(t: )=Py-(1—t)+P, -1, )

where ¢ takes a value between 0 and 1. 1 —¢ and 7 can be
considered as influence functions of the control points.
The subscript of R, means that P, is the first control
point of Ry. In the parenthsis of Ry, ¢ is the parameter
variable, and 1 means the highest degree of the variable.
In general, with n+1 control points {P,, P,,* -, P,} or
{P;}6 in short and their influence functions {f,(z),
F1(@), -, f(0)} or { f(#)}5, we can express a space curve
segment Ry(¢: n) as

Ro(t: n)= ‘go P.-f(t), t[0, 1]. @)

In the similar way, a surface segment can be expressed
by a set of control points {P;;}g'g with their associated
influence functions { f;;(u, v)}55.

Soo(, v: m, n)=‘=io é‘,o Py fi,0),u,0el0, 1. ()

We postulate that R or S is within a convex hull which is
spanned by their control points. When the control points
are coplanar, colinear, or converged to a point, then the
associated shape segment is on the same plane, the line
or the point. Then the following relations must hold.

f20, 3 f=1,

[aekl

fislw, 020, jz:;o fifv)=1. @

[

[}

For a shape segment of a line, eq. (1) gives

So)=1-¢t, fit) =1t ®

Next we define order and degree of a shape segment.
A line segment has two control points and the
eq. (1) is of degree one with respect to 2. We call it a
segment of order two, or degree one. A single point is
considered a segment of order one or degree zero. A
curve segment given by eq. (2) is of order n+1 or
degree n. surface segment by eq. (3) is of order (m+ 1) x
(n+1) or degree mxn. Just as a line segment, which is
a curve of degree one, is generated from the linear
interpolation of two shapes of adjacent curves of degree
zero, a curve segment Ry(z: n) of degree n is generated
from the linear interpolation of two adjacent curves
Ry(t:n—1) and R,(t:n—1) of degree n—1, which is
shown as

Ro(t: m)=Ro(t:n—1)-(1—1)+R,(t: n=1)-1.  (6)
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As Ry(t:n—1) and R (t:n—1) are contained in the
convex hull of the control point vector {P;}}, Ro(t: n)
defined by the interpolated point on the line inside the
convex hull is also in the same convex hull.

In order to simplify the treatment of subscripts of
control points, we introduce the shifting operators E
and F, which operate on the first and second subscripts
of the control points in the following way.

P, ,=EP, Pi+1,j=EPij» Pi,j+l=FPij- G

As the shifting operators obey the integer exponent rule
such as

E.Ei=E*i E.E ‘=1, 3)

they can be treated as the algebraic constants in algebraic

manipulation of expressions containing them. The

shifting operators can also operate on curve and surface
segment expressions. Then the eq. (1) can be written as

Ro(t: )=(1~t+tE)P,

=1 —t+1E)Ry(t: 0). )
Similarly, .
Ry(t: n)=(1—t+tE)Ry(t: n—1). (10)
From (9) and (10),
Ry(t: n)=(1—t+1tE)'P,. (¢D))
From this, f(t) is obtained as
[lB)=,Cp-t-(1=1)" ", (12)

This satisfies the condition (4). By using P,=E"-P,,
eq. (11) is transformed into
Ro(t:n)={(1—0)E~ ' +¢}"P,. (13)

Equations (11) and (13) are the generating form of a
curve segment expression.
From eq. (11) and a;,=P;—P;_,, we obtain
{1+(E=-1)-t}"-1
(E=1)-t "
By putting t=—(E—1)¢, and expanding {(1-7)"—1}/1
around =0, then we obtain the following expression.

n (<0 7 —ry—1
Ro(t:n)=P0+'.=21 (E'-g!'dti’l{( t’)

(1—t+Et)"-Py=P,—t-

}~a,-. (14)

This is the same as that given by P. Bézier. Comparing
egs. (11) and (14), (11) is far simpler, from which we
can easily deduct various useful relations. Especially
when surface segments are treated, the simple form is
very useful.

A surface segment equation with a control point mesh
{P;;}g:5 is obtained by a similar method, and the result is

Soow, v:m, n)=(1—u+uEY"-(1—v+vF)'Pyy. (15)

In the above equation, expressions with the other end
points are obtained as in (13).

A surface segment with three-sided lattice points
{P;;}o% ' is given as follows,

Too(u, v, w: N)=(u+vE+wF)"Py,, (16)
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Fig. 1 Control points and parameter variables of rectangular
and triangular patches.

where u, v, w belong to an area coordinate system shown
in Fig. 1, and have the relation u+v+w=1.

In the following sections, subscripts and parameters
of R, § and T are omitted when they are clear from the
context. The generating forms used in the shape expres-
sions are called here H-form for simplicity. In H-form,
the operand is called a control vector which may be
shown by their elements written in { }.

3. General Characteristics and Control Points

By differentiating Ry(z: n) with z, we obtain

1dR, ot
~ =P =(l=t+1Ey ™ (E- P,

=R, (t:n—1)—Ry(t:n—1). a7n

This is of H-form, and its control vector is {a;}]. This
shows that the line segment connecting R,(¢: n—1) and
Ry(t:n—1) is the tangent line of Ry(¢:n). A similar
geometrical interpretation can be made to derivatives
of S or T. For example,

1 9%S

e <(E—1)-(F~1)-Soo(u, v: m=1,n—1)

! 1
=2. {i-(soo+sl1)- 3 .(SOI+S10)} . (18)

Torsion 82S/0udv of a surface segment of degree mxn
is determined from the difference between mid-points of
two line segments made by connecting the corresponding
points of surfaces of degree (m—1) x(n—1), S4p and S, ,,
S0 and S,;. A tangential plane of T, of degree n is
determined by the corresponding three points of Ty,
T,, and T,, of degree n—1.
The j-th higher order derivative is given by
- &

(—"n—{)—'-%=(1—t+:E)"-ﬂ(E—1)'PO. )
This is also of H-form and its control vector elements
are made from the j-th forward difference of the original
control points {P;}3. Its value at each end point is
expressed by j+1 control points begining from that
point. A control point P; is determined by up to i-th
derivatives of the curve at the end point,

=0

P,=(1+E-1)P,= zl: (CAE=1)P,,. (20)
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Similar relations hold for surface segments S and T.
The equations are easily obtained.

Next, we discuss the relations between control edges
and the geometric characteristics of shapes. An arbitrary
point of a curve segment or a surface segment can be
made as an end or a corner point of the shape segment,
which is explained in the following section. Accordingly,
any point of a shape segment has associated control
points Pyg, Py, Pos, Plo, Pyo and Py, or control edges
a,0=P,o—Poy, a30=P30—P1o, boy=Po1—Poo, boz=
Py,—Py, a,=P,;—P,; and b, =P, —P,,. The
geometrical characteristics such as position, tangent,
tangential plane, osculating plane, curvature and torsion
of a curve and a surface, are given with these values.

Tangent: 2=<!, @1
a;
. . a4 xa
Binormal: f= @, xa,l’ (22)
Principal normal: 9=%x f. (23)
Osculating plane: a plane made by a, and a,,
1 n-1 9
Curvature: - =n—--‘—'32—, (24)
p n  a
. 1 n=-2 a;-B
Torsion: —=——-—"t"——, 25
pe n (az-9)-aq 23

The curvature and the torsion of a space curve can be
interpreted as proportional to the pseudo curvature and
torsion of the associated control polygon.

For a surface segment, the geometric characteristics are
given as follows.

a0 % bo,

Normal: A= ——-—,
|@10 % bo, |

(26)

Tangential plane: a plane made by a,, and by,

Gaussian curvature:

1 1 1
K= <— -————) cosec? 6, (27
P1 P2 Piz @n

Mean curvature:

1 (1 1 1 )

H==-—+——-2cos§.-— }cosec’ 0, (28
2\p1 P2 P12 @9
where 1/p, and 1/p, are the curvatures calculated from

a,o, A-a,0 and by, A-by,. 1/p,, is given by
1 é

P12z @y0-bot’
where § is the distance between P,; and the tangential
plane at P,. 0 is an angle between a,, and by,. These
geometric characteristic values can be easily obtained
graphically.

4. Partitioning of Shape and Order Raising

4.1 Partitioning

A region of a surface segment bounded by two con-

stant parameter curves or a portion of a curve segment
bounded by a constant parameter point can be expressed
as the new shape segment which has the same order as
the original segment. The control points of the new
segments are determined from the original control
points.

A curve segment R(t) is divided at r=7, into two
curve segments R'(z,) and R"(z,), where domain of ¢,
and ¢, are both [0, 1]. Now let E; and E, be the shifting
operators, {P'}3 and {P"}j be the control points cor-
responding to each segment. Then the following equa-
tion holds for 0<r<¢,.

(1—=t,+1,E)Py=(1—t+1E)P,.
As t, =1/[t,, the right side of the above equation becomes
{1—t,+t,-(1—to+1t,E)}'Py.

Comparing the above two expressions, we obtain the
following relation,

Pi=(1—to+1,E)'P,,. 29)
In the similar way, for R'(z,)
P ={(1—t)E "' +1,}'P,, (30)

is obtained. See Fig. 2. As they have simple geometrical
interpretation, the points can be determined graphically.
Thus, a curve segment with a control vector {P;}j has
control vectors {P}}3 and {P!"}3. In this way, control
points of a segment can be increased indefinitely.
At the junction point, the derivatives with respect to ¢
are continuous to the n-th order, but the derivatives with
respect to f; and ¢, are discontinuous owing to the
difference of scale. With increased control points, the
shape of the curve segment can be finely controlled.
An application example is shown in Fig. 6.

Just as the partitioning of a curve segment, a surface
segment can be divided into four segments S'(u,, v,),
S"(u,, vy), $"(uy, v,), and S™(u,, v;) by two curves
S(uy, v) and S(u, vy) as shown in Fig. 3. The expression
of one segment is

S'(uy, v)=(1—u, +u,E)"-(1-v, +U1F|)”P:)o, 3D

Fig. 3 Partitioning of rectangular and triangular patches.
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Fig. 4 An example of surface synthesis by partitioning and
offset.

where
=(1—ug+uoE)' (1 =04+ 0oF) Pyo. 32)
For the other surface segments, a similar expressions can
be obtained. An example of shape control by the surface
partition is shown in Fig. 4. For a three-sided surface T,
expressions of surface segments T'and T" which are
partitioned by curves passing through (u,, vo, wo), such
as shown in Fig. 3, are
T'(uy, vy, W)=y +0,E; +w, F,)"Pho,
T" (3, 3, W3)= (3 +0,E5 + W, F5)"Pgo, (33)
with their control points
P}j={u0 +(1—uo)E} - {uo+ (1 ~uo)F} Py,
u'—{(l —Wo)+WoE T F} - {(1-v5)+v,EF '}
X (g +voE+woF)' 1~ jPU. (34
They are obtained by putting the independent variables
as

u~1u, v w
ul= ) 1= > 1= »
1—u, 1-u, 1-u,
u v—10, w—w
Uy=-—, Upy=—7>—, Wz=—_o,
Uo Uo U

and substituting them in T with rearrangements. For
remaining regions III and IV the expressions can be
obtained by the similar method.

4.2 Order Raising

A curve segment of order n+1 can be expressed as a
segment having order of more than n+ 1. The new control
points can be determined in the following way. Let the
initial control points be {P{}3 and the new control
points with order increase of one be {P"*V}53*! where
a superscript means degree of a segment. Then as the
shape is the same, the following equation holds.

(1=t +EYPP =(1—t+EYPHIPE+D. (35)

By multiplying (1 —¢)+1 to the left side of eq. (35), the
equation becomes

M. HosAka and F. KIMURA

Fig. 5 Generation of new control points by order raising.

A—t+tE)-{(1-t)+}PP
mil(p4l—i @,
_.-=Zo { n+1 +n+1E }
X iy CUE) (1= 1)1 ~'Pg™.
If P{"*1) is determined so as to satisfy the condition
P{"tV=¢(n)-P{", (36)

where

b=l gt 7

the above expression becomes (1 —¢+tE’)"*?-Py*D, See
Fig. 5. The new control point P{"*!) is a point which
divide the edge vector P/, P™ in the ratio n+1—i:i.
Accordingly P{"*"’s are on the vector a{™’s, and P+
and PV coincide with P{” and P®™. The new control
edge vectors are inside of the adjacent edge vectors. So
the polygon comes indefinitely nearer to the original
curve segment as the order increases indefinitely. With
the increased control points, fine control of the shape
becomes easy. Similarly the new control points with order
increase of j is given as

Ps"+"’={"+ﬁ‘ b0} P 37

Figure 6 shows an example of deformation from a single
segment of degree three by the partitioning and the order
raising.

For a surface segment S, the new control points with
order increase of one are expressed as

Pt it =g (m)- pi(m)- P, (3®)
where
- I g
$im=1- n+1 tari
Similarly for a surface segment T,
PV =y m)- P, (39
where
w.,(n)=1——i————i'— + gy g,
4 n+l n+1 n+l n+1

An example of surface shape control by the order raising
is shown in Fig. 7.

5. Connection of Curve Segments

The shape modifying method with increased control
points is powerful for local control of a shape. But for
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(1) (2) (3) (4)

Fig. 6 An example of curve synthesis by partitioning and order
raising.
X : Connection points.
[: Control points.
Initially a curve segment of degree three is generated.
(1) Partitioning into three segments and order raising
of degree three to five.
(2) Displacement of control points.
(3) Order raising of degree five to degree ten.
(4) Displacement of control points.

Fig. 7 An example of surface synthesis by partitioning and
order raising.

construction of a large shape, it is necessary to connect
shape segments with desired properties. In this section,
conditions of connection of curve segments are
investigated and equations of interpolating vector values
are derived. As the degree of a curve segment can be
increased without changing the shape, orders of two
connecting curves can be assumed equal. The connection
must be continuous to curvature at the junction.
Naturally their osculating planes must be coincident.
The geometrical relations of the control edges of both
curve segments shown in Fig. 8 give the following
conditions.

Fig. 8 Connection of space curves with tangent and curvature

continuity.
Py=Py : continuity of position.
a,=—k-ay: continuity of tangent. (40)

a,- ay-9 L.
5—=—75: continuity of curvature.
a; a,

Extensions of a, and @) must intersect at Q in the
osculating plane. Now if A be the length of the
perpendicular from Q to a,, from the following relations

a, _a, h ' h

k=a—'1’ ke=7=7, k”E_a_’z=Z§’ 41

and eq. (40),
h,
k=2 72— [k @2)
a hy

is obtained. This is the condition imposed among the
arbitrary constants k, k, and k,. The curvature at the
junction is (2/3)- (hy/a?).

When each segment of a synthesized curve by con-
nection is of degree three, points Q;, which are made by
the same process as the point Q stated above, are
considered as another kind of control points. If k,=k,
for simplicity, they are equal to k. With k;’s, we descri-
minate k corresponding to each control point Q,. Now
we divide each edge of the polygon made by {Q;} into
three sections in the ratios as shown in Fig. 9. That is,

Q101 Qi0V=k;_,: 1,
0:07: Q/Qi=k;: 1,

'
Q;,

Fig. 9 Generation of a smooth curve with new control points

Qrs.
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010410 Qi41Qie 1=kt 1,
0i+109i41: 0iv1Qis 1=Kyt L
A connecting point P; of the curve segments is determined
by dividing Q7Q},, in the ratio k;: 1. Then P,_,, Q;,
¢, P;and P, Q;,,, Q/., P;,, are the control points
of the previous type. Curve segments are connected at
P;s with continuity to curvature. The relation between
P;s and Qs is given by
Qi +ki(L+k;_)-Q;
1+k;-(1+k;_))
+ki'(1 ki) Qtkikivi Qiiy
LT+kipy-(1+k)

=(1+k)-P,

43)
When k;=1, eq. (43) becomes simply

Q-1 +4Q;+0;,=6P, 44)

On of the uses of egs. (43) or (44) is to control the
synthesized curve by Q,’s. Displacement of Q; has an
influence only on P;_,, P, and P, ,. That is, its effect is
limited to the neighbouring four segments without
changing the continuity conditions. This property is
favourable to local control of shape. The so called para-
metric B-spline corresponds to the case k;=1. Another
use of eq. (43) or (44) is to obtain {Q;} given {P;}.
Instead of the variables in (43) or (44), the equivalent
control edge vectors are to be used for simplicity. Here
the new notation of control edge vectors b, ¢ and a are
used, which were denoted previously as a,, a; and
a, +a,+a; according to the definition of a single control
edge vector. And a subscript i attached to the new
notation vectors indicates that they belong to the i-th
segment. Then, for eq. (43),

bi+2k;-(1+k)-byy,+k}-cipy=a;+ki-a;,,,

¢;=ki-by.y, (45)
and for eq. (44),
bi+4b,y +biir=a;+a;,, (46)

are obtained. The boundary conditions for the
synthesized curve are curvatures at end points, which
are given by eq. (24). When the curvatures at both ends
are equal to zero, then the following equations are the
conditions.

2b,+c¢,=a,, b,+2c,=a,. @7

Given a;’s and k;’s, eqs. (45) and (47) are linear simul-
taneous vector equations with unknown b;’s. Even when
a;’s are not geometrical chord vectors but differences of
adjacent sampled vectors, the solution of eq. (45) can be
used for vector interpolation between the sampled
vectors.

This interpolation method was introduced by one of
the authors more than ten years ago with the different
derivation [3] and has been used in Japanese car industries
as the best feasible interpolation formula. In the inter-
polation, a method of determining the values of k;’s is
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important, which have much influence on the shapes of
polygons made by {Q,;} and {P;}. When adjacent chord
lengthes a; and a,,, are quite different, if all k;’s are set
to 1, then the shapes of the two polygons {Q;} and {P;}
are also greatly different. Natural relation of the shapes
of the two polygons seems to be kept when ks are
proportional to a/a;,,. So the following relation is
assumed.

a; "’_ >
ki=(a—) =, (48)

i+1
where >0 and r;=a;/a,,,.
From experiments, =0 gives unacceptable results and
w=1 or w=1/2 is good. Difference of the shapes by w=1
or 1/2 is not so great, but the selection of this value
depends on man’s subjective criterion on the shape. For
convenience in surface connection, the following com-
promised formulas for k;’s are usable.

2 3

I’,<§ k,- -2—'r,~,

2 3

3<ni<3 k=1, (49)
3 2

r>y ki—gr,».

An example of curve generation, in which there are k;’s
quite different from 1, is shown in Fig. 10 with the
distribution of radius of curvature.

Fig. 10 An example of a smooth curve passing through arbi-
trarily specified points with the distribution of radius
of curvature.

6. Connection of Surface Segments

In egs. (43) and (45), if Q/’s, P’s, k;’s or b;’s, a;’s are
functions of another parameter, they can supply data
for surface generation and there arise no problem of
connection of surface segments. When these vector
values can be expressed by their associated control
points, the latter control points can be considered as
those of the surface. In this case, there arise no problem
of surface segment connection, but we cannot directly
specify the various conditions given to the surface such
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Fig. 11 Smooth connection of surface patches.

as passing points, boundary curves, etc. When a surface
is to be composed by connecting surface segments,
smooth connection on their boundary curves and con-
tinuous surface curvature condition at corner points of
segments have to be satisfied.

As shown in Fig. 11, a surface segment S" connects
surface segments S' and S"" with a common corner point
Pyo. R(v) is a boundary curve between S' and S™. The
u-direction tangent vectors of S' and S" on R(v), which
we call tangent vectors of the first kind, and the v-direc-
tion tangent vector of R(v), which is a tangent vector of
the second kind, must be coplanar on each point of
the boundary curve. From the above conditions, the
following equation must hold

Av)- i)+ p(v)- Si(©) = v(v)- R(v), (50)

where A, p, v are scalar functions of v. As each term of the
above equation can be transformed in H-form of the
same degree, relations between control edge vectors
(a0, @y, ", ay,) of both surfaces can be determined.
In the similar way, relations between control edge
vectors (byy, by1,°**, b,,;) can be obtained. As u and v
direction control edges of S" have P,, in common, the
following relation must hold.

byy—a; =bo,—a,. (5D

All surface segments meeting at P, must have a common
tangent plane and the relation (51).

One of the easiest way of shape definition is to define
a space curve network which covers the shape to be
designed. When the network has a desirable shape, then
meshes made by the network have to be fitted by surface
patches connecting smoothly with adjacent patches. If a
mesh is too large to be fitted by a single patch, then the
mesh should be divided into fine meshes by added space
curves. Degree of a curve segment between adjacent
nodes of network should be made three in order not to
increase degree of a surface patch more than 5x35.
Shape division with the network usually generates four-
sided surface patches, but sometimes generates three-,
five-, six-sided patches. Accordingly, methods of con-
nection of surface patches of various shapes have to be
developed. Even in the connection of four-sided patches,

when magnitude ratio of the tangents of the first kind
along the boundary of the patches is not constant, a
new connection method has to be established. They are
described in this section.

6.1 Connection of Four-Sided Surface Patches

6.1.1 Case for constant ratio of the tangents of the first
kind

For this case, the surface segments S', S", S™ and
S™ with their coordinates are shown in Fig. 12, Let
ratios of tangent vectors in u(or v) direction at a junction
be k,(or k,), and these values are constant at each
junction on the v (or ) direction curve passing through
P,,. Surface segments are to be of degree 3 x 3. Then
the tangent vectors of the first kind of the boundaries
u=0 or v=0 are

S, ()=3-(1—v+0F)* -ayq, (52)
S,(w)=3-(1—u+uE)3 b,,. (53)
For smooth connection of the surface segments S and
S™ with the segments S" and S, the following conditions

on the control vectors {a,;}, {b;;} of each segment must
hold.

kl'a‘1i=_allli) (=0,---,3) (54)
koobfi=—ph, U
ky-aji=—al

{kz'bli‘{:_b:l-

These relations are derived from eq. (50), by putting
A=pu=1 and v=0. If the condition (51) at the node P,,
is to hold for segments S" and S™, that is

blu ““Iu =b=>1 —allm
Bt =5l )
the same condition for the segments S'' and S becomes,
using eqs. (54) and (55),
ky-bYi—k,-ay, =k, -byy —k,-al,,

1 1 1 1
It SN €

_.bl ——@17=—-bg, —
kz 11 kl 11 kz 01

Fig. 12 Smooth connection of surface patches. (Case for
constant ratio of the tangents of the first kind).
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From these relations, the following theorem is deduced.
Theorem: If egs. (54) to (57) hold, then (P}, P}, PY)),
(Pllll’ Plllo’ Pllul): (Pllnl’ P!)‘;’ Pll‘;) and (Pll‘;’ Pll‘(')a Plll) are
colinear respectively, and P}, (or Ph) divides the line
segment PL,PY, (or PY,PT) in the ratio 1: k,, and P,
(or PY,) divides the line segment PT P} (or PSPL, in
the ratio 1: k,.

If P,, of any one of the four segments can be deter-
mined, the other P,,’s around the P,, are determined
with this theorem. P, of a segment has the following
relation with S,, at the Py,.

Py, =EFPy
1
=Poo+(E—1)Poo+(F—1)Pyo+ 3z Su- (58)

S,, can be assumed to be the mean value of (0/0v)S,
and (8/0u)S, at Py,. They are obtained from values of
S,’s or S,’s at neighbouring nodes along v or u directions
by using the interpolation eq. (45), in which b becomes
S,, or S,, and a becomes difference of S, or S,. When
the surface shape is simple, k,’s are set equal to 1, and
surface synthesis by patch connection becomes simple.

6.1.2 Case for non-constant ratio of the tangents of the
first kind

Ratios of magnitude of tangents of boundary curves at
each node are assumed not to be constant. In order to
satisfy the smooth connection conditions, surface
segments of degree 3x3 and degree 5x5 should be
diagonally distributed as shown in Fig. 13. Let surface S
be of degree 5x 5 and ST, S", S, S™ be of degree 3 x 3,
and boundaries of the surface SY be numbered as 1, 2,
3, 4, and coordinates of each segment be as shown in
the figure. Ratios of tangent magnitude at each node in
direction are k,, ki, k3, k3 and in v direction k,, k}, kg,
k,, where a subscript indicates the boundary curve, and
a prime indicates a distant node from the origin. For the
boundaries 1 and 3, the conditions of smooth connection
are

A1(0)-8u(1, v) +v,(v)- (1, 1) =S](0, v),

13(0)- 8,0, v)+v3(v)- S70, v)=Si(1,v).  (59)

Fig. 13 Smooth connection of surface patches. (Case for non-
constant ratio of the tangents of the first kind).
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For the boundaries 2 and 4,

Ax()-S'5(u, 1)+v,()- Siw, 1)=S7(x, 0),

A4()- S (u, 0)+va(u)- S (w, 0)=S;(, 1).  (60)
For ;s and v/’s, the following equations are assumed

A=k, A=) +2/k;-k;-t-(1—t)+ki-£2, (61)
vit)y=np-t- (1= +n3-12-(1-1), (62)
where
t=v for i=1,3,
t=u for i=2,4.

And n;’s and #;’s are determined by the egs. (59), (60) and
(61) to take the following values.

o & _ ks
woel([B). el ),

k 7
m=6-(l—\/k:i), n=e(J2-1). ®

Also, the control vectors of the surface segment SV are
determined as

5-alo=3-k,-aj,
25-a),=3-Q-k; a5, +2-/kiki-abo) +n,-bY,,
50-aY,=3-(3-k,a}; +6-/k k7 -a}, +ki-al)
+2-1, - b, +ny - b3y,
50-aY3=3-(k,-a3+6-/k,k}-a},+3-k'\a}))
+1y- b33 +2:n7- by,
25-aY,=3-(2-/k,ky-al;+3-K;-al) + 7} - bhs,
5-ays=3-ky-ak;. 64
The other control vectors ay;, by and bYs (i=0,- - -, 5) are
given by similar expressions. From these equations, the
control points P;;’s are determined except for P,;, P,3,
P,;, and P,; which are arbitrary, but may well take
values such as
Py;=P, +ay +by,,
Py3=Ps+as—by
P3;=Py —a4+by,,
Py3=Pys—a4,— by,
An example of surface generation of this case is shown
in Fig. 14.
6.2 Generation of Non-Four-Sided Surface Patches

By connecting four-sided or three-sided surface
segments on each neighbouring boundary around a
common corner point of the segments, a non-four-sided
surface patch can be constructed. Such surface patches
are needed at convex or concave corner regions of an
object made from synthesized surfaces.
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(2) contour lines.

Fig. 14 An example of a surface made of segments of degree
3 %3 and degree 5x5.

6.2.1 Connection of four-sided surface segments

As shown in Fig. 15, n four-sided surface segments of
degree 3x3 are connected around the center point P.
All the second control points P;’s of boundary curves
which start from the center point P must be coplanar,
and in the tangential plane of the synthesized surface at
P. For simplicity, these second control points are made to
coincide with the vertices of a regular polygon of » sides.
Let the second control point of the boundary curve
R,(¢) be denoted as P,, and the control edge vectors of
Ry(t) be b;,, b;,, b;;. The control vector of the tangent
vector R,(t) multiplied by v-(1 —¢) is given by

{v'bil9§'v'bi23%'v'bi3’0}~ (65)

Fig. 15 Connection of rectangular surface segments.

Let the boundary curve of the surface segments S
(u, vy and S"*(u, v) be R,(v) and u=0, and the boundary
curves R;_; and R;,, be R,_ (), R;,,(v) and v=0. On
the boundary curve R,(v), the following conditions are
to hold according to eq. (50).

SO 4 SE+D —y. (1 —p)- Ry(v). (66)

With the expression (65), the following relations between
control vector elements are obtained.

i i+1
ad+afoV=v-b,,

. . 2
+1
a{)+af] )=§'v'bi2v

. 1
i
a+alif V= S-V-ba,

af}+alfV=0. 67)
And from the definition of the notation,
a(li())=bi—l,1a a(lig”=bi+1,1- (68)

With these conditions and the first relation of (67), v=
2-cos (2n/n) is determined. The second equation of (67)
gives P, ’s of surface segments. P, ,’s of surface $'” and
S¢*D are symmetric with respect to the vector b;,. When
b;,’s are at the symmetrical locations around the normal
axis vector at P, all P, ’s are easily determined. Other-
wise the second equation of (67) has to be solved. The
third and fourth equations of (67) determine P,,, P,,,
P,,, P,;. The remaining control points can be arbitray.
If the surface segments are of degree 2x 2, only P,, is
arbitrary. An example of this connection is shown in
Fig. 16, with the distribution of control points, where a

\

e

,\\ e

(2) contour lines.

Fig. 16 An example of a hexagonal patch made of rectangular
surface segments.
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six-sided patch is synthesized from connection of four
four-sided segments. Intersection lines with the
equidistant planes are also shown in the figure.

6.2.2 Connection of three-sided surface segments
Three-sided surface segments are connected around

the center point Py, as shown in Fig. 17, to make a

many-sided surface patch. The expression of a segment is

T=(u+vE+wF)*Py,. (69)

Let a common boundary curve be at w=0, and its control
edges be {b,, b,, b,}. Tangent of the surface segment in
w direction can be obtained from the following operation.

dT 8T 1 (0T oT
———— (£+a—v) (70)
Now new vectors a,;’s are defined as
1
“i=Pi—1,1_5'(Pi—1,o+Pio)» (@=1,2,3). (1

For smooth connection of surface segments 7" and T,
P,_,,’s are to be selected to satisfy the following con-
ditions.

A-at+p-al'=v-b, (i=1,2,3). (72)

For each segment, P, Py, and P, are coplanar, when
Py, and P, of all segments are vertices of the regular
polygon of n sides. Equation (72) are satisfied by A=
p=1 and v=2-cos 6, where 0 is an angle between a,
and b,. P,,’s of each segment can easily be determined
if b,’s are in the symmetrical positions, otherwise their
determination becomes complicated. For i=3, P,;’s
and P,,’s are easily determined as they do not interfere
with others. An example of a five-sided patch made by
this method is shown in Fig. 18, with equiheight contour
lines.

Fig. 17 Connection of triangular surface segments.

6.2.3 Connection of three-sided and four-sided surface
segments
When three-sided surface segments are used, frequently
they have to be connected to four-sided segments. So
the connection method needs to be established. As shown

M. HosakA and F. KIMURA

(1) control polygons.

(2) contour lines.

Fig. 18 An example of a pentagonal patch made of triangular
surface segments.

Ry
P=p’ li'; i, el .
" %\\ ! :' ’3.”'3;
| !
! I
L N\ T A,
[ o
T~
|
S

Fig. 19 Connection of triangular and rectangular surface
segments.

in Fig. 19, two boundary curves T(u, v, 0) and S(u, 0) are
to be smoothly connected. Both surface segments are of
degree 3 x3 and have smooth tangent connection along
side boundary curves at Py, and P,,. The first tangent
vector of T along the boundary w=0 can be determined
by the following operation.

d 9 i 0

%—a—w—(l—v)“,—j;—w%. 73)
By using the above operation, d7/dw can be expressed
by the control vector {P};}3.

2
{Po:}= {Pon P01+§(P11_P01), Py,

2
+§(P11"P21)’ le}- (74)

With this control vector, the three-sided surface segment
can be considered as a four-sided surface segment whose
first tangent vector along the connecting boundary is
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given by
3-(1—-v+vE)’-(Po, —Poo)- (75)

The positions of the control points {Pg;}§ are
geometrically easily determined from the original control
points of 7. Connection of two four-sided segments is
not difficult, if their tangent vectors of the first kind are
parallel on the boundary.

7. Conclusion

In order to include free form shapes as the element of
our geometric modelling and processing system
(GEOMAP) [8], and to respond to strong demand on
CAD and CAM of die making and other shape design
in industries, we have developed a new theory for shape
expressions and various application methods of the
theory. The features of our work are summarized in the
Sec. 1 of this paper. Though there may be further
development of the theory or application methods in

future, we think the basic ones have been completed.
Accordingly, we hope we could have feedback informa-
tion and evaluation of applying them in practical cases.
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