An Approximate Method to Solve Two-Dimensional
Laplace’s Equation by Means of Superposition of
Green’s Functions on a Riemann Surface
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A new method of solving two dimensional Laplace equation is presented. This method is a superposition
method of Green’s function on a Riemann surface constructed by a complex transformation and is suitable
for analyzing potential problems in aregion that contains curved arcs as its boundary. This method originates
from the research of the charge simulation method used often in some part of electrical engineering as an
effective and simple method of solving Laplace equation. The essential and evident defect of this method is
that the error of the analysis becomes large for the exterior problem of a very thin region or a region without
thickness due to the singularity of Green’s function superposed in this method.

To overcome this difficulty, in this paper, Rimann surface constructed by two-valued complex transformation
z=3}(t+ 4) is used. The poles of Green’s functions are placed on one of two sheets of the Riemann surface
and their influence on the other sheet is superposed similarly to the ordinary charge simulation method. By
using this complex transformation, the curved arc without area is transformed into a closed region with wide
area. Then we can keep the poles of Green’s functions apart from the boundary. This fact enables us to reduce
the influence of the singularity of Green’s function.

Above technique is verified by analyzing the test problems in electrostatics. The results are fully satisfactory.
This method is applicable to the problems in a region that contains many curved arcs of arbitrary shape.

Hence it will be widely used for various problems in electrostatics or hydrodynamics.

1. Introduction

Laplace’s equation is a typical and basic partial
differential equation in theoretical physics and has been
studied by many scientists and mathematicians for
hundreds of years. Abundant results obtained from the
studies of this equation have stimulated many researchers
in various fields of science and technology. Thus far
many approaches have been investigated. For example
the theory of special functions has been used for
hundreds of years''? and much knowledge has been
accumulated, but its applicability to problems in modern
science and technology is too narrow; the discrete
method, such as the finite element method,® is applicable
to almost all problems (problems in a region of arbitrary
shape, non-linear problems, and non-homogeneous
problems), but is not necessarily effective under some
conditions; the Monte Carlo method, which com-
pletely depends on the function of a computer, is efficient
only for some special problems, and so on.

None of these methods, or other methods presented
thus far, can be applied to diverse problems in modern
science and technology.

In the two-dimensional boundary value problem of the
Laplace equation, the difficulty of the problem in the

*Department of Electronics, Faculty of Engineering, Kagoshima
University.
**Department of Information and Electronic Engineering,
Yatsushiro National College of Technology.

Journal of Information Processing, Vol. 3, No. 3, 1980

region that contains a curved arc as its boundary is
well known. If the shape of the curve is arbitrary,
no known method has been appropriate.

This paper proposes an approximate method for
solving the boundary value problem in a region that
contains curved arcs as its boundary. This method
originates from the research of the charge simulation
method,>'® which has been used for about 10 years in
some parts of electrical engineering and is recognized
as an effective and simple method of solving Laplace’s
equation. The charge simulation method (we will call
this CSM hereafter) is a superposition method of
Green’s functions in the unbounded region of Laplace’s
equation. It corresponds to the boundary method and
the collocation method”-® in terms of the method of
weighted residuals.

In 1969, H. Steinbigler® first used CSM in his dis-
sertation to compute the electrical field around a high-
voltage apparatus. In the 1970s, several reports® ~1%):2%)
related to the application of CSM were published
especially in Japan and West Germany.

The CSM is not considered to be straightforward,
because contour points and charge points must be
determined by trial and error. However, the estimation
of error in the CSM is very simple, because only the
error on the boundary need be examined, since it is here
the maximum error appears. A high degree of accuracy
can easily be obtained if the shape of the boundary
concerned is not too complicated.
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Its evident and essential defect® is that the error of the
analysis becomes great for the exterior problem of a very
thin region, or for a region without thickness, because
of the singularity of Green’s functions superposed in the
CSM. Usually the charge points are placed adequately
apart from the boundary to reduce the influence of the
singularity of charges. For a very thin region, we must
place the charges near the boundary, and hence a con-
siderable error is inevitable. The CSM has not been
considered applicable for the exterior problem of a
very thin region or for a region without thickness.

To overcome this difficulty, we propose to use Green’s
function on a Riemann surface constructed by the two-
valued complex transformation, z=1/2(t+1/t). To be
specific, we regard one of the two sheets of the Riemann
surface as an ordinary plane on which the boundary
value problem exists, and let the branch cut of the
Riemann surface coincide with the curved arc (boundary)
under consideration. Charges (poles of Green’s function)
are placed on the other sheet of the Riemann surface,
and their influence on the first sheet is superposed
similarly to the ordinary CSM. By this complex trans-
formation, the curved arc (boundary) is converted to a
closed curve that has a wide area within it. Then we can
keep the poles of Green’s function apart from the
boundary. This enables us to reduce the influence of the
singularity of Green’s function.

Chapter 2 is a general introduction to the CSM. It
discusses the error estimation and how to determine
the data necessary in the CSM. In Chapter 3, we explain
the structure of the Riemann surface and show
graphically the behavior of Green’s function on it. How
to superpose Green’s function in a practical problem is
also shown. Chapter 4 points out several problems
associated with this technique and describes their solu-
tions. In Chapter 5, in order to verify our technique, we
analyze the problems of parallel-plate condensers and
curved parallel-plate condensers, well known in electro-
statics. The accuracy reached in these analyses is remark-
able.

In Chapter 6, we evaluate our technique and describe
its application to other fields. In this paper, technical
terms from Electrical Engineering are often used.
Readers not familier with Electrical Engineering, may
substitute those terms with the following:

Potential function due to unit charge: Green’s function

Charge points: Poles of Green’s function

Charge quantity: Weighted factor multiplied by Green’s
function

Conductor of Electrode: Boundary

Charge: Pole of Green’s function (the latter is not a com-
plate synonym of the former).

2. Charge Simulation Method

2.1 Principle of Charge Simulation Method

Here we consider the Dirichlet problem of Laplace’s
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Fig. 1 Arrangement of charges and contour points for the
calculation of the potential Dirichlet-type problem.

equation in a domain D, which is shown in Fig. 1. For
simplicity, we consider a problem in two dimensions:

Vi (x,»)=0, (x,y)eD, O
¥(x, r=f6s), (x,y)el, 2

where T is the boundary, and f(s) is the boundary value
at any boundary point, 5. In the CSM, the general solu-
tion ¢(x,y) of the preceding Laplace equation is
expressed by means of superposition of potential func-
tion due to several charges at charge point (x;, y;)
external to D. That is,

N
¢(x9 y)= 1;1 QiG(x’ Vs X yi)’ (3)

where N is the number of charges, Q; is an unknown con-
stant, called the weighted factor or the magnitude of
i-th charge, and G(x, y; x;, ;) is Green’s function in the
unbounded region due to unit line charge at (x;, y;). In
two-dimensional problem, the function G(x, y; x;, y)) is
as follows:
1 [y — v 2 4 (v— 2

Gx, y; xp, y) =3 log Jx—x)" +(y—y)*. (@)
The expression (4) is a harmonic in the domain D,
because the charge points (x;, y;) are not inside the D.
Hence, the general solution (3) satisfies eq. (1).

To determine the solution, we impose on eq. (3), the
boundary condition at suitably chosen contour points
(x;, ¥;) of the same number as that of the charge points.
Then,

N
¢(xj’ )’j)= ‘;1 QlG(xj9 Yis Xis J’i)=f(51)r
forj=1,2,3, ---,N (5

where (x;, y;) is the j-th contour point, and s; also denotes
the contour point. We here assume that (x;, y;)#
(x5, ¥2)-

Solving this system of N in linear eq. (5), we can
determine the N charges Q;. Substituting Q;s into eq.
(3), we get an approximate solution of the CSM. Of
course, whether or not the calculated set of charges fits
the boundary conditions must be checked.
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2.2 The Properties of the Error in CSM'®

Here we define the error e(x, y) as the difference
between calculated potential ¢(x, y) and the exact
potential Y(x, y), as follows:

ex, y)=y(x, y)— d(x, y). ©

Since Y(x, y) satisfies eq. (1) and (2), and ¢(x, y) satisfies
eq. (1), we get:

V2 e(x’ y)=0a (x9 y) € D’ (7)

e(x, Y)=f(s)—¢(x, )y, (x,y)el. ®

The second term of the right side of eq. (8) is already
known. Hence, the error e(x, y) is the solution of the
first kind of boundary value problem, with boundary
value f(s)— @(x, y)r- In other words, the error has the
same properties as the potential. In CSM, if we examine
the error on the boundary, we can determine the
maximum error of solution.!” We need not examine the
error inside the domain.

In Fig. 2, we show a error distribution of the solution
of the axisymmetric problem of calculating the electrical
potential between a sphere r?+(z—3)*=1, which is
charged to a prescribed potential +1, and an earthed
plane at z=0. In the figure, the contour lines 8 and —9
denote +107% and —107%, respectively. Even though
the number of charges is only 7, very high accuracy is
obtained. We can see that the error decreases logarithmi-
cally as the point moves away from the boundary.

4.0
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Fig. 2 Typical error distribution for the sphere-plane boundary
(electrode).

2.3 How to Determine the Charge Points and Contour
Points
The accuracy of CSM analysis depends, sensitively,

on the charge points and contour points. How to deter-
mine the charge points and contour points is an

™,

Fig. 3 Typical arrangement of contour points and charge points
for a smooth closed boundary.

important problem but, because of the complexity of
combining them, it has not been studied. The authors
present a practical and simple answer to this problem.

For the problem of the exterior field with a smoothed
boundary, shown in Fig. 3 we first put contour points
on the boundary so that the distances between them are
nearly equal. Then we contract the boundary by the
contraction ratio R(<1), the center of contraction being
suitably taken. We define these new points as charge
points into which the contour points are converted. This
means that the charges approach the boundary when R
tends to 1, and they move far from the boundary as R
decreases. For the interior problem, we must place them
outside the boundary. By magnifying the boundary with
the magnification ratio E(> 1), the contour points move
out of the region. We define those points as charge
points. If we adopt an inverse parameter R=1/E, we
get a parameter of the same form as in the interior
problem.

3. Charge Simulation Method Using Riemann Surface

3.1 Application of Conformal Transformation

Eq. (4), superposed in the CSM, is equal to the real
part of Green’s complex function in an unbounded
region

G(z; 2= 55 log (=20, ©

where z=x+iy and z;=x;+iy;. Equation (4) is harmonic
and satisfies Laplace equation, except for z=z; and
z=o00. An application of a conformal transformation
to a harmonic function has no influence on the
property of the harmonic function. Various conformal
transformations produce many test function available for
various objects in the CSM. For example, one of the
authors used Green’s function in a bounded region
determined by a conformal transformation in order to
reduce the number of charges and, consequently, the
computing time.'®

The underlying context in this paper is that although
we transform the unbounded region into the Riemann
surface with two sheets, we use Green’s function on
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each sheet of the Riemann surface.!® Green’s function
on the Riemann surface is also harmonic; i.e., it is the
solution of Laplace’s equation.

3.2 Properties
1/2(t+1/1)

The conformal transformation, z=1/2(t+1/t), quite
often appears in numerical analysis.2® By simple reduc-
tion, we obtain the inverse transformation as follows:

t=z+,/z*—1, (10)
t=z—/z*—1, (11)

where /z2—1 is a complex function that takes the value
/3 at z=2. By these two transformation equations, the
curved line that connects two points (—1, 0) and (1, 0)
is transformed into a closed line on the z-plane. In Fig.
4, some curved arcs on the f-plane and corresponding
closed lines are shown. One of the two sheets is mapped
to the outer region of the closed line by eq. (10), and the
other sheet is mapped to the inner region by eq. (11).
Because the branch cut of the Riemann surface attached
to the mapping /z2—1 is allowed to be arbitrary in
shape, we select its shape in z-plane so as to coincide
with the curved arc on which the boundary value of the
problem is assigned. The closed curve in t-plane, which
is the image of this branch cut, is divided into the upper
part, and lower part, corresponding to the curved arc
being considered as in the sheet 1, and sheet 2, of the
Riemann surface with the prescribed branch cut, respec-
tively.
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Fig. 4 Transformation of a curved cut to a closed line by
z=1/2(t+1/1).

3.3 Green’s Function on Riemann Surface

Green’s complex function on an unbounded ¢-plane is

1
G(t; 1)= 5= log (1= 1),

where ¢; is the pole of Green’s function. Substituting ¢
and ¢; expressed by egs. (10) and (11) into this equation,
we get
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6z z) =5
log (Z+\/;t7_zi‘\/ﬁ),
log (z— /7 —1-z,—/z} - 1),
* log (z+\/ﬁ—z,~+\/z2——_l),

log (z— 22— 1—z,+./z = 1),

z,z;€ 8.1 (@)
zeS8.2,z;e€ 8.1 (b)
ze S.1,z,eS2 (¢

z,z;,€8.2 (d)
(12)
where the expressions in (a) and (b) are the representa-
tions of Green’s function on sheet 1 and sheet 2, respec-
tively, and correspond to the pole of Green’s function
on sheet 1. Egs. (c) and (d) are similar representations
corresponding to the pole of Green’s function on sheet 2.
In Fig. 5, the contour lines of the real and imaginary
parts of Green’s complex function (12) are shown. In
Fig. 5, the graphs (a), (b), (c) and (d) correspond to the
expressions (a), (b), (c) and (d) of eq. (12), respectively.
The shape of the branch cut in Fig. 5 is a straight line
between (—1, 0) and (1, 0). The discontinuity in value
of the real and imaginary parts is seen on the straight
branch cut. However, if we inspect the graphs, over-
lapping Fig. 5(a) on Fig. 5(b), we can see that the contour
lines in the former continue smoothly to that in the
latter by crossing the branch cut. For the pair of Fig. 5(c)
and (d), the same is true. The complex logarithmic func-
tion is a multivalued function. Hence, the argument is
arbitrary by 2znn, where n is an integer. Here restrict
(1/2n) arg (z) to between — 1/2 and 1/2. The discontinuity
line of the imaginary part at Im (G)= +0.5 goes on
artificially. This is because the graphic program is
incomplete, partly because of the lack of time and
partly because of the programming technique. Actually,
the discontinuity line goes on smoothly.

The value of Green’s function on each sheet depends
on the shape of the branch cut. In Fig. 6, Green’s func-
tion for a non-straight cut is shown. Graphs (a), (b), (c)
and (d) in Fig. 6 are equal to those in the previous figure,
except for the shape of the branch cut.

Since our idea is that to solve the boundary value
problem on sheet 1, we must locate the poles of Green’s
function on sheet 2 and use its influence on sheet 1,
then eq. (¢) among the 4 equations in (12) is important

G(z; z,)— log(z+\/z —1—z;+JzZ2=1). (13)
Three other egs. (a), (b) and (d) also can be used in the
CSM, because they are all harmonic. However, it is
not yet obvious whether or not they are useful.

The complex representation of Green’s function is
given here, because it simplifies the theory and
enables us to make concise programs. In reality, we use
the real part of the Green’s complex function; i.e.,

9(x, y; x;, y)=RAG(z; )}, 14

where R, {A} denotes the real part of 4. Moreover, the
gradients of function g in either x or y direction are given
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Fig. 5 Green’s functions on Riemann surface with a straight cut and a source at (0.75, 0.25).

by:
dg G
a—);—Re{a—z}, (15)
g oG
where z
+ 7
e6_1__ T
62—2nz+\/}2—1—zi+\/zjz—l an

3.4 The Application to Practical Problems Containing
Many Curved Arcs

Here we consider the Dirichlet problem of Laplace’s
equation in domain D, which contains two curved arcs
as its boundary, as shown in Fig. 7(a). The prescribed
boundary value on the outer boundary is Vo, and the
values on the two inner boundaries are ¥, and V,,
respectively. Charges are represented in Fig. 7 by three
kinds of notations: %, A and O. Their meanings are
x: Green’s function on the ordinary plane,

A:  Green’s function on the Riemann surface with two
branch points, 4 and B, and
O: Green’s function on the Riemann surface with

two branch points, C and D.

The numbers of these three kinds of Green’s function are
Ny, N; and N,, respectively. The shape of the branch
cut of the above two Riemann surfaces must, of course,
coincide with those of corresponding curved arcs.

The poles of the three kinds of Green’s function are
located around the corresponding curved arcs, as shown
in Fig. 7(a). These expressions, in formulae, are:

N
¢(x, y)= ‘; O:R, {G(z; z))}, (18)
where N=Ny+N;+N,
and
1
G(z; Z.‘)=E
log (z—z;), 0<igN,
log {z+/(z— A)z—B)~z;+/(z;i— A)(z:— B)},
x No+1Zi<Ny+ N,
log {z+\/(z_C)(Z_D)_zi+\/(zi_C)(zi_D)}»
No+N,+1<i<N.

(19)
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Fig. 6 Green’s functions on Riemann surface with a curved cut and a source at (0.75, 0.25).

e
(b)

Fig. 7 How to use Green's functions for a practical problem.

The cross sections of the Riemann surface are depicted
in Fig. 7(b). Charges denoted by X are on the ordinary

plane, and charges denoted by A, and O, are on sheet 2
of the Riemann surface having the curved arc 4B, and
CD, as its branch cut, respectively. It is obvious that this
technique is applicable to the problem in a region that
has many curved arcs. We also can apply this method
without difficulty to thick, but very narrow regions,
and to wide, but partially thin regions.

4, The Problems of Numerical Computation

The contents in the previous chapter are insufficient to
practical computation of our problem. Several problems
must be solved to implement our technique.

4.1 Computation of Complex Function ./z2—1

The complex function /zZ—1, with a branch cut of
arbitrary shape, is necessary to map the z-plane on the
t-plane. The complex function ./z2—1 must be
continuous in the region except on the branch cut, which
runs from (—1, 0) to (1, 0). Using the standard square
root function, CSQRT(Z), which is built into the com-
puter, the result of CSQRT(Z*Z — 1.0) applied to /22 — 1
has values of oposite sign in some parts. In order to make
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the function that we need, we must use the following
sign manipulation*.

4.1.1 Straight Cut

fr_l { CSQRT (z*z—1.0), (x,y)€kE,,
z¢~1= _
~CSQRT (2*z—1.0), (x, y) € E,,

where z=x+iy, E, is the sum of three areas (x=0,
y20), (x>0,y<0) and (=0, —1<x<0), shown in
Fig. 8, and E, is the complement of E,. Equation (20)
is discontinuous on the straight branch cut, and the
value of the function on the cut is equal to the limiting
value when we approach the cut from the upper side.

(20)

4.1.2 Non-straight cut

The shape of the branch cut is curved and assumed to
be y=F(x)>0 for —1<x=<1 and F(+1)=0, as shown
in Fig. 9. Then:

CSQRT (z*z—1.0), (x, )€ E,,
\/z—r—:—l={

@1
—~CSQRT (z*z-1.0), (x,y)€E,,

-1€x<0

Fig. 8 Area E, used for the computation of +/z*—1 with a
straight cut.

Fig. 9 Area E, used for the computation of v/z2—1 with a
curved cut.

*The resulting sign of computation is not always common in
all computers, but the Fortran system on the Facom 230-45s of
Kagoshima University, and the HITAC 8800 at the computer
center of Tokyo University, well perform this procedure.

where the area E, is the sum of three areas (x20, y=0,
yZ F(x)), (x>0, y<0) and (x <0, F(x)>y>0). Equation
(21) is discontinuous on the curved cut, and the value on
the cut is considered to be continuous when we reach
the cut from the upper side, as in the previous case.

4.1.3 More complicated cut

If the branch cut runs from (—1,0) to (1, 0) with
twist and turn as shown in Fig. 10(a), sign manipulation
becomes more complicated. In the areas marked with a
+ sign among the several areas divided by the imaginary
axis, the straight line between (-1, 0) and (1, 0) and the
curved branch cut, we adopt +CSQRT(Z*Z—1.0) and
the expression of opposite sign in the other areas. In
Fig. 10(b), the bold line means belonging to the + area;
the dotted boundary does not belong to the + area.

<

ANAR ALY
\/ X

Fig. 10 The case of more complicated cut.
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4.2 Which Sheet does the Branch Cut Belong to?

The branch cut connects two sheets. To which sheet,
1 or 2, does the branch cut belong? It belongs to both
sheets. In other words, it is a combination of the cuts
belonging to sheets 1 and 2. When the transformation
to the #-plane is executed, the cut on sheet 1 is mapped to
the upper part of the closed line in the z-plane, and the
cut on sheet 2 is mapped to the lower part. Thus, the
closed line is completed, and the single valuedness of
z=1/2(¢+1/t) is assured.

Hence, one must provide additional data to decide to
which sheet the contour points or the charge points
belong. This is one factor of our method that differs from
the ordinary CSM. Since the boundary value problem
we are considering exists on sheet 1, we must compute

\
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the potential by specifying index 1. There are two cases
of index 1 and 2 for the potential on the curved arc. In
each case, the potential is equal to the limiting value
that is given when one approaches the curved arc from
both the upper and lower sides, or, in other words, the
potential on the curved arc has two values.

The use of this index on the curved arc becomes
complicated for the problem that has many curved arcs.
On the index of the potential point on one of many
curved arcs, index 2 is effective only when the potential
point is on the branch cut of the Riemann surface on
which the charge concerned exists. If the potential point
and the charge are on different Riemann surfaces, there
is no distinction between indexes 1 and 2; then index
1 should always be used (see Fig. 7(b)).

5. Numerical Examples

§.1 Parallel Plate Condenser

In Fig. 11, an infinitely long parallel plate condenser
with a width of 2 (in arbitrary units) is arranged with a
distance of 2D between the plates. The potentials of the
upper and lower electrodes are assigned +1 and —1,
respectively. The contour points are designated in the
t-plane by dividing the unit circle in to N-equal parts.
When this unit circle contracts by the ratio R, we
designate the positions at which the contour points
correspond as charge points. Since, in practical com-
putation, data (contour points, charge points, and check
points) is given by the value in the z-plane, then all of
the above data should be given by values in the z-plane.
Hence, contour points have the value on the straight line
that connects points (—1, D) and (1, D), and charge

1

Lt .
* *
- e— e *
+ *
* * + + x
t-plane z-plane

(a) (b)

Fig. 12 Arrangement of contour points and charge points for
the parallel plate condenser.
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points are arranged on the elliptic circle, with foci of
(-1, D) and (1, D). The contour points need additional
data denoting to which sheet each contour point belongs.
The charge points do not need such data, because they
are all on sheet 2.

As R tends to 1, charge points approach the boundary,
and as R tends to 0, charges move far away from the
boundary and, consequently, the charge points are dis-
tributed in a circle of a large radius. The contour points
in the z-plane distribute densely near the tips of the
plate, and sparsely near both sides of the center of the
plate (see Fig. 12(b)).

We halved the number of unknown constants, using
symmetry of the upper and lower electrodes. We did not,
however, use the symmetry of right and left, because
the program was designed to treat non-symmetric
problems. Fig. 13 shows typical error distribution on the
boundary (electrode). The error vanishes at the contour
points and oscillates to a + or — direction between the
contour points. Estimation of the error F is the mean
square root of errors on the boundary. By locating
several checkpoints (here we locate 3 checkpoints; one
checkpoint may be enough) between contour points, we
estimate the error as follows:

F=[Y E2M, @
i=1

Fig. 13 Examples of error distribution on the boundary
(electrode).
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where M is the number of checkpoints and E; is the
error at the i-th checkpoint. In Fig. 13, we see that the / //
maximum value of absolute error is about 1.5F, and the 0=05 /
absolute error is usually less than F. The horizontal axis N=g8 /
is x, and x=0.0 and x=1.0 denote the center and tip K / /
of the electrode, respectively. 100

We studied the variation of error on the boundary F by M / / / /
charge location R and its number N. The results are | e
shown in Figs. 14~17, where R is the abscissa, and F /
is the ordinate. nt g VAN

The error F diverges as R tends to 1 and decays 10711 / / /

20
logarithmically as R diminishes from 1 to 0. For very F \,_,,/
small values of R, the simultaneous equation associated \

with the CSM becomes unsolvable, even by a direct \ 2% / /

method, such as the Gauss Seidel method. For a value of |
R just before the simultaneous equation becomes 10 ! 28
unsolvable, the solution of the CSM contains many errors ! /
due to the loss of the significant digit. For such a case,

the loss must be compensated for>? by solving the ! N=32
simultaneous equation two or three times by a direct \ '

“10

method. The dotted line in Figs. 14~ 17 denotes the limit 10 1 /
|

reached by single precesion arithmetic. The upper and
right area of this line can be reached. The limit for double
precision is shown by dash-dot lines. There are two i
kinds of limit. One is the round-off error limit, and the
other is when the simultaneous equation cannot be 00 05 R 10

solved because of its ill-condition. At a fairly large R, Fig. 15 Average error on the boundary (electrode of the
if the N of the charges is large, the error F is small. condenser) for D=0.5.
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Fig. 14 Average error on the boundary (electrode of the Fig. 16 Average error on the boundary (electrode of the
condenser) for D=0.3. condenser) for D=1.0.
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0.0 0.5 R 10

Fig. 17 Average error on the boundary (electrode of the
condenser) for D=2.0.

However, the error characteristics obtained by solving
the simultaneous equation once by a direct method
cross at a small R. This is because the degree of loss of
the significant digit is large for a large N. In Figs 14~17,
the loss of the significant digit is compensated for, and
the inversion of the characteristics at small R disappears.

Because the error distribution curve in Fig. 13 looks
different from that of the least-square approximation,
greater accuracy is expected if we manipulate the contour
or charge points. It is not the object of our paper to
discuss how, but it is noted that our tentatively chosen
charge points produce very satisfactory results with such
high accuracy as we have shown in this paper. If the
distance between two electrodes, D, decreases, it becomes
difficult to achieve high accuracy. By simply increasing
the N of the charges, a fairly high accuracy can be
obtained. In Fig. 18, the charge distribution (which is
proportional to the normal derivative of potential) of the
upper and lower sides of the electrode is shown in
arbitrary units. It seems curious that the charges on
the upper and lower sides of a thin electrode distribute
separately, but actually, we can obtain the charge dis-
tribution on the upper and lower sides of the electrode by
computing the normal derivative of potential with indexes
1 and 2, respectively.

5.2 Curved Parallel Plate Condenser

The shape of the plate without thickness is arbitrary,
which may be the straight line or a curved line. Here we
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Fig. 18 Charge density on upper and lower side of electrode of
higher voltage.

Fig. 19 Curved parallel plate condenser.

consider a curved parallel plate condenser, as shown in
Fig. 19. The shape of the two electrodes is a quarter of
two concentric circles with radii of R1 and R2. The con-
tour points are determined in the ¢-plane so that the
angles viewed from the middle point of the top and bot-
tom points of the closed line are equal (see Fig. 20 upper
figure). The distances between neighbouring contour
points are not equal in this way of determination. It is,
however, not so different from what we hoped, because
the closed line is nearly equal to an unit circle. Charge
points are determined by contracting the boundary simi-
larly to the previous problem. The number of contour
points on the upper side of the closed line (shown as a
bold line in Fig. 20) in the z-plane is larger than that on
the lower side of the closed line (shown as a dotted line in
Fig. 20). The same is true in the z-plane; that is, the num-
ber of contour points on sheet 1 is greater than that on
sheet 2. The distribution of the contour points mentioned
above makes the error distribution on both bound-
aries almost equal. If we place on sheet 1, the same
number of contour points that is on sheet 2, the error on
the upper side of the electrode becomes greater than
that on the lower. The estimation of error F are given
in Fig. 21~23 for R1=1and R2=1.5, 3.0 and 5.0. As in
the previous example, the symmetry of the right and left
is not used. Hence, the number ¥ in Fig. 21 ~23 can be
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Fig. 20 Arrangement of contour points and charge points for
the curved parallel condenser.

00 05 [=} 1.0

Fig. 21 Average error on an electrode of the curved condenser
for R1=1.0 and R2=1.5.

halved. The relationship between the error F and the
parameter R is not simple as in the previous example.
As N increases, the error decreases as far as numerical
experiments show, and in the range of 0.5<R< 1.0, the
error decays logarithmically as R goes down. Generally
speaking, we can conclude that there is an optimal
value of R. Fig. 22, however, shows that the curve cor-
responding to R2=3.0 and N=80 decays monotonically.
The increasing error, as R approaches zero, is greater
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Fig. 22 Average error on an electrode of the curved condenser
for R1=1.0 and R2=1.5.
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Fig. 23 Average error on an electrode of the curved condenser
for R1=1.0 and R2=5.0.

than the level of loss of the significant digit, and its
compensation does not suppress the error. If the distance
between the electrodes tends toward zero, achieving high
accuracy becomes difficult, and the solvable area of the
simultaneous equation also becomes small.
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6. Discussion

The boundary value problem that contains a curved arc
as its boundary is difficult to solve, not only by the charge
simulation method, but also by any other method. By
the technique presented here, two problems in electro-
statics that are known to be difficult to solve can be
analyzed easily with a maximum error of 107%. Such
accuracy is impossible to achieve with a discrete method
such as FEM, which needs numerical interpolation to
determine the value of potential at an arbitrary point.
It is remarkable that the field around the tip of the
curved arc is as accurate as any other point. A tip of the
curved arc is transformed to a point on the smooth
closed line in the t-plane. The problem in the region
surrounded by such a smooth line can be analyzed with
high accuracy by the ordinary CSM.

This technique must be evaluated, not only from the
standpoint as the method of eliminating the singularity
of the tip of the curved arc, but also from its wide
applicability for solving problems in the region that
contains many curved arcs of arbitrary shape as its
boundary. In this paper, the general method of
computing the complex function /z2—1 with cut of
arbitrary shape is presented. This fact simplies the com-
puting procedure of this technique remarkably.

In the field of hydrodynamics, Neumann problems
related to the velocity potential are common. The
method known as the vortex simulation method?®
(VSM) is available for such problems. By transforming
the Neumann problem concerned into a Dirichlet
problem related to the flow function, one can determine
the quantity of charges by the ordinary CSM. General
solution in VSM is expressed by the sum of the product
of the quantity of charges and the imaginary part of
Green’s complex function. It is troublesome that we
must manage not to cross the region under considera-
tion for the discontinuity line of the imaginary part;
however we need not compute the normal derivative of
the solution. The error in VSM is somewhat less than that
in ordinary CSM, which treats the problem by comput-
ing the normal derivatives conventionally in Neumann
type problems.?*) The VSM technique also is available for
our technique of using the Riemann surface. The
potential flow around the very thin plate can be analyzed
effectively and accurately by combining our technique
and VSM.

As an application of conformal mapping, there is a
technique!® to reduce the charge number and decrease
the computing time by superposing Green’s function,
which satisfies a part of the boundary condition. This
method also is available for our CSM using the Riemann
surface.

The technique we present here is not suitable for
eliminating the singularity in the problem that contains
conductors with several sharp edges of non-zero angles.
We think this problem must be solved by the CSM using

S. MurasHIMA and H. KUHARA

conformal mapping, which transform the angle of a
sharp edge into 180°.

The use of the CSM and our technique presented in
this paper is simple in principle, is effective, and has
wide applicability. For the linear Laplace equation, it is
superior to a discrete method, such as the finite difference
method and FEM.

Because of our fascination with sophisticated
computers, we seem to have relied too much on numer-
ical analysis, and to have abandoned the conventional
analytical method. However, the appearance of the
computer caused such a decisive revolution that we
cannot imagine the revival of classical methods of
computation. Now we must consider the most effective
utilization of the computer for every kind of problem.

7. Conclusion

A new approximate method of solving the two-
dimensional Laplace equation has been presented. This
method is a superposition of Green’s function on a
Riemann surface constructed by the two-valued trans-
formation, z=1/2(¢+1/¢). It is suitable for analyzing
potential problems in a region that contains curved arcs
as its boundary. Such problems were considered un-
solvable by known methods.

In the technique presented here, we regard one of two
sheets of the Riemann surface as an ordinary plane on
which the potential problem exists, and let the branch
cut coincide with the curved arcs concerned. The poles
of Green’s functions are then located on the other sheet,
and their influence on the first sheet is superposed
similarly to the charge simulation method.

This technique is verified by analyzing test problems
in electrostatics. The results are fully satisfactory. This
method is applicable to the problems in a region con-
taining many curved boundaries of arbitrary shape.

We hope that this paper will stimulate the advances of
semi-analytical techniques, such as that shown here, for
solving partial differential equations.
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