Short Note

A Note on Enumerating Combinations
in Lexicographical Order

ICHIRO SEMBA*

The algorithm for generating combinations of k things chosen from » things in lexicographical order is
well known. In this paper, we improve that algorithm and show that the improved algorithm is faster than

the original for large k’s.

1. Introduction

The problem of generating combinations is an interest-
ing example of the use of computers in combinatorial
mathematics and provides a very instructive exercise in
the implementation and analysis of algorithms. This
problem is simply stated, but not easily solved. Various
algorithms [1, 2, 3, 4] have been given for this problem.
A detailed evaluation of performance and a summary
of property of combination generating algorithms
have been given by Payne and Ives [5].

In what follows, we improve the algorithm [2] which
generates the sequence of combinations in lexicographical
order, and show the improved algorithm is faster than the
original for large k’s.

2. Definition

We consider generating all the k-subsets of the set
{1,2,---,n} in lexicographical order. We denote a
k-subset by X=(x,,"*-, x;), where 1 <x, < - <x,<n.
Let the index 4 be the largest J such that x;<n—k+i.
If x,=n—k+i for all i (1<i<k), then the index 4 is
defined to be 0. We denote the m-th k-subset in lexico-
graphical order by X®™ =(x{™,- - -, x{™), where | <x{™ <
-+ <x{™ <n. Let the index ™ be the largest i such that
xmM<n—k+i If X™=n—k+i for all i (1<i<k), then
the index A"™ is defined to be 0. We denote the number
of different elements between X™ and X™*1 by 4™
(1 <m<(})). We divide all the combinations into three
classes, C,, C, and C,.

Ci={X"|x{th=n—k+h™ -1},
Co={X"x{, <n~k+h™ -1},
Cy={X™|h™ =0}.
We will give an example to gain a better understanding
of our definitions.

Example. Let n=6, k=4. We show 4-subsets X,
corresponding classes C;, ™ and d‘™.

*Department of Pure and Applied Sciences, College of General
Education, University of Tokyo.

Journal of Information Processing, Vol. 4, No. 1, 1981

m xm class hm™ dam
1 1234 C, 4 1
2 1235 c, 4 1
3 1236 C, 3 2
4 1245 c, 4 1
5 1246 c, 3 I
6 1256 c, 2 3
7 1345 c, 4 1
8 1346 c, 3 1
9 1356 C 2 1

10 1456 c, I 4

i 2345 c, 4 I

12 2346 c, 3 1

13 2356 c, 2 1

14 2456 c, 1 I

15 3456 c, 0

3. Property of Original Algorithm

In this section, to begin with, we consider the original
algorithm. The original algorithm generates X+
from X™ in a following way.

Step 1. Examine elements of X™ from right to left

to determine the index ™.

Step 2. Change values of x{™* ¥ for i=h",--- k.

It is interesting to measure the number of element
examined to determine the index 4™ in step 1 and the
number of element whose value is changed in step 2,
in order to generate all the k-subsets in lexicographical
order. Let us denote the former by Fy(n, k) and the
latter by Go(n, k).

Property 1. For 1 <k<n,

Fo(n,k)=Go(n,k)={(n+1)/(n—k+ ”}(Z) -l

Proof. From the original algorithm, we immediately
know that Fy(n, k) is equal to Go(n, k). Thus we con-
centrate our attention upon determining Fy(n, k). For
a fixed A, the number of k-subsets whose number of
element examined is k—h+1 is (""*%*7!), because
x{™_ - -+ x{™ can be any h-subset of {1,- - -, n—k+h—1}.
We have to examine k elements to know the last k-subset
(n—k+1,---, n). Therefore it follows that

36

Fo(n,k)=hgl (k—h+ 1)(""‘;:"‘ 1) +k

_ (n-ll(- l)—l
~ o+ D=+ D)) -

This completes proof.

Thus the original algorithm does, on the average,
less than (n+ 1)/(n—k + 1) examinations and changes per
k-subset.

4. Property of Improved Algorithm

Now let us consider the improved algorithm. The
improved algorithm is based on the following property.
Property 2. For 1<k<n,

(1) IfX™eCy, then x{ohV=x{th+1,
(n-+ 1)_ x(-"') (, # h("')),
plmt 1) p(m) _

2) If X™ e C,, then x{"* ”=x},"",.’1>+i—h""’+ 1
W™ <i<k),
XD = x(m) (< pm),

A+

Proof. The proof is direct consequence of the definition
of lexicographical order.

This property suggests that we are able to determine
A™* D from A after the element x{7), is compared with
n—k+h™—1. Therefore we need not examine
elements of X™*! from right to left. Especially, when
X™ ¢ C,, we have only to change the element x"*1),
Therefore, in this case, we need not change k—A™ +1
elements.

Let us denote the number of element examined by
Fy(n, k) and the number of element changed by G(n, k).
Property 3. For 1<k<n,

COMBINATION GENERATOR
LEXICOGRAPHICAL ORDER
SUBROUTINE COMBI (X,N,K,H)
INTEGER X(K),H
IF(K-H) 10,20,30

10 DO 11 I=1,K

X(1)=1

11 CONTINUE
NK=N-K
H=K
IF(N EQ K) H=0
GOTO

20 X(H)=X(H)+l
IF(X(H) EQ.N) H=H-1
GOTO

30 X(H)=X(H)+1
IF(X(H) LT.NK+H) GOTO 31
H=H-
FOTO 40

31 H=H+1
X(H)=X(H-1)+1
IF(H.LT.X) GOTO 31

40 RETURN
END

Fig.1 FORTRAN algorithm implementation.

an

1. SEMBA

W Fei=(})
n
2) Gnk)=(+k/n)(k) +1

Proof. It is obvious that Fi(n, k) is equal to (). We try
to determine G,(n, k). If X™ e C,, then d™=1. The
number of the set C, is Thko, (kA= 1), because
for a fixed A, x{™, -+, x{™, can be any (h— 1)-subset of
{L,---,n—k+h-2}. If X™ e C,, then d™ =k —-h™ +1.
For a fixed &, the number of k-subsets whose value of
d™ is k—h+11is (""*4*~2), because x{™, - -, x{™ can be
any h-subset of {1, -+, n—k+h—2}. We have to change
k times to initialize XV,
1t follows that

G (nj) = () Z(k h+l)<n—k:h—2)+k
SR
=(1+ k/n)(Z) -

This completes proof.

Thus the improved algorithm does, on the average,
one examination and less than (1+k/n) changes per
k-subset.

5. Experimental Result

The improved algorithm, coded in FORTRAN,
is given in Fig. 1. The K-subset of {1, - -, N} is generated
in the integer array X in lexicographical order. The
integer variable H is nonlocal to COMBI and must be

Table 1 The average computing time to generate all the K-sub-
sets of {1,---, 20} without subroutine linkage time and
the ratio of the improved algorithm to the original one.
(times in milliseconds)

rigin; Impro :
K a(l)gofit:rln alggrit‘}/;: Ratio
1 0.23 0.20 0.870
2 0.97 0.97 1.000
3 5.90 6.27 1.063
4 24.67 25.33 1.027
5 94.60 81.23 0.859
6 254.47 214.93 0.845
7 562.30 421.13 0.749
8 975.63 719.80 0.738
9 1422.33 958.17 0.674
10 1640.83 1053.00 0.642
11 1738.43 990.07 0.570
12 1436.47 767.60 0.534
13 1029.50 484.87 0.471
14 597.37 242.47 0.406
15 282.37 98.90 0.350
16 106.00 31.30 0.295
17 31.73 8.03 0.253
18 7.20 0.97 0.135
19 1.40 0.27 0.193
20 0.30 0.07 0.233

A Note on Enumerating Combinations in Lexicographical Order

greater than N before the first call. While K-subset is
generated, the integer variable H remains 1<H<K.
When the last K-subset is generated, the integer variable
H is set 0.

We have measured the computing time to generate
all the K-subsets for the improved algorithm and the
original algorithm, coded in FORTRAN, on a HITAC
8800/8700 at the Computer Centre of the University of
Tokyo. We show the average computing time without
the subroutine linkage time in Table 1. The result shows
that the improved algorithm is faster than the original
for large K’s.

Acknowledgement

The author would like to thank Prof. T. Shimizu for
his hearty encouragement.

37

References

1. KURTZBERG, J. Combination (Algorithm 94), Comm. ACM,
S, 6, (1962) 344.

2. Mirsup, C. J. Combination in lexicographical order (Algorithm
154), Comm. ACM, 6, 3, (1963) 103.

3. CHasg, P. J. Combinations of m out of n objects (Algorithm
382), Comm. ACM, 13, 6, (1970) 368.

4. Liu, C. M. and TANG, D. T. Enumerating combinations of m
out of n objects (Algorithm 452), Comm. ACM, 16, 8, (1973) 485.
5. Pavng, W. H. and Ives, F. M. Combination generators, ACM
Transactions on Mathematical Software, §, 2, (1979), 163-172.

