Distributed File Management and
Job Management of
Network-Oriented Operating System

HIiDEHIKO TANAKA* and TOHORU MOTO-OKA*

The concept of a network-oriented operating system (NOS) is based on the message-oriented, interprocess
communication facility, which can be used independently of the process locations. A distributed file manage-
ment system and a distributed job management system are implemented on the experimental computer
network, TECNET, as a set of system processes on the system nucleus. In this paper, we discuss the structure
of these management systems and show the implementation results. We also discuss the enhancement of

system reliability against system failure.

1. Introduction

Since the success of the ARPA network project, many
computer networks have been developed. In the past
10 years, the basic concepts of networking were de-
veloped, such as interprocess communication beyond
machine boundary, communication protocol, layered
structure of network architecture, and virtual devices
such as network virtual terminals. Presently, almost all
computer manufacture support network applications
through such network architecture products as SNA. The
internetworking of existing computer networks is going
to be an indispensable technology.

Our research of computer network began in 1972
[1, 3]. The goals of this project were: to define the basic
operating system structure that is appropriate for many
kinds of network applications; to develop a model for a
network utility manager regarding file and job manage-
ment; and to test the feasibility of a network oriented
operating system (NOS) through real implementation.

We began our project by making an experimental
computer network testbed (TECNET) in our laboratory,
using a few minicomputers and medium-scale/large-scale
computers. This operating system consists of a system
nucleus and many processes. The system nucleus provides
such facilities as process creation, multiprogramming,
interprocess communication, and interrupt handling.
Next, we designed and implemented a distributed file
access mechanism and a distributed job management
system on the system nucleus. In 1979, we finished the
implementation of an extended version of a file manage-
ment system that supports the multiplicated file handling
feature to enforce system reliability.

Because the location of each process is transparent to
the user of the NOS interprocess communication facility,

*Department of Electrical Engineering, University of Tokyo
113, Japan.

Journal of Information Processing, Vol. 4, No. 1, 1981

some management or application processes can be im-
plemented easily. Although all current network architec-
tures are based on the connection-oriented interprocess
communication, our interprocess communication facility
is message-oriented, and each message transfer is con-
trolled directly by SEND/RECEIVE primitives. This
characteristic is especially effective for realizing more
tightly coupled control systems for network applications
or some transaction-oriented applications. The file
management system of NOS enables users to access
remote files as easily as local files. When allocating file
resources, this manager guarantees deadlock-free alloca-
tion of network wide by following a prefixed file request
cycle. NOS jobs consist of distributed process sets, which
are controlled by the distributed job management sys-
tem. We developed a high-level system description
language to implement NOS. With this language, a
programmer can directly use a system uncleus service,
such as interprocess communication.

2. System Architecture of NOS

2.1 TECNET

Figure 1 shows the hardware structure of the experi-
mental computer network, TECNET, as it existed in

256KB 8KW 4KW
FACOM IMLAC FACOM
230/38 PDS-1 R
basic | 2.4kbps basic | 2.4kbps 20
8KW KBps
HITAC basic OKITAC | BSC FACOM
8800 2.4kbps | 4300C 38.4kbps R
8MB 36KW
BSC | 76.8kbps Fiying
Spot
MM: 64KB
CM: 8KW/PUY PPS-1 Scanner
3PU/Sys

Fig. 1 Structure of the computer network testbed, TECNET.

Distributed File Management and Job Management of Network-Oriented Operating System 19

March 1980. The data link control procedure is binary
synchronous communication procedure of code trans-
parent mode by DLE-doubling. Communication control
units consist of TTL ICs and handle framing, CRC code
generation/checking, and DLE handling by hardware.

2.2 Structure of NOS [3]

The structure of NOS is shown in Fig. 2. We assume
that all element computers in the network have the four-
layer operating system consisting of: system nucleus,
distributed file management system, distributed job
management system, and job proccesses. The functions
of the system nucleus are process scheduling, multipro-
gramming, and primitive operations support, such as
interprocess communication facility, interrupt handling,
and virtual memory control. All other functions are
implemented by many kinds of processes that communi-
cate with each other through primitive operations for
interprocess communications, such as SEND msg/
RECEIVE msg. These operations activate explicit mes-
sage transfer. Memory sharing among processes is not
permitted in NOS, even if the processes are in the same
computer. Although the interprocess communication
primitives issued by users are checked for their capability,
those issued by system processes, such as device processes
and distributed file and job management processes, are
not checked.

3. File Management

3.1 File Management Structure

The objectives of the NOS file management system are:

1. Easy access to distributed files

2. Fully distributed control

3. Built-in countermeasures against deadlock

4. Extension to distributed DBMS

5. Multiple copy support
The structure of the NOS file system is shown in Fig. 3.

The user requests a file through an access interface
(FACI). When the file access command is ‘OPEN’, the
local File Main Manager (FMM) communicates with a
remote FMM and locates the Access Process that con-
trols the physical access to the required file. FACI keeps
the process number of the access process and transmits

<::> Job Processes

Distributed Job
Management System

Distributed
File
Management
System To other
Systems

System Nucleus

Fig. 2 NOS system structure.

System A

User
Process

System B

Fig. 3 Structure of NOS distributed file management system.

file access commands, such as ‘READ’ or ‘WRITE’,
when they are issued by the user process. The processing
of ‘CLOSE’ is via the FMMs, just as ‘OPEN’. There are
two kinds of access processes—Basic Access Process
(BAP) and Extended Access Process (EAP). BAPs
support conventional file access, such as disk read/write,
line-printer output, and card-reader input. EAPs support
higher level file access, such as a search operation for
data that satisfies some condition. EAPs process data
where it exists, thus minimizing the volume of trans-
mitted data and making remote file access efficient.

3.2 Distributed File System

There are several kinds of directory organization
schemes for distributed files. One involves placing a
central directory that contains directories of all files in the
network. Another scheme is to query every computer
about the existence of the files. A third scheme is to make
every user designate the system name in which the file is
stored.

NOS directory organization is different from all these
scheme. We assume that every user has his home site
where the main directory of his files is placed. When a
user issues a file access command, he specifies a file name
that he assigned. Using this name as a key, the system
searches a User File Name Table (UFNT) until the
owner name, the file name assigned by the owner, and
the home site of the owner are found. The physical loca-
tion and disk address of the file can be obtained by
searching an Owner File Name Table (OFNT) at the
system pointed to by the home address of the owner. The
access control field in OFNT is used to check the file-
access authorization. When a user wants to enter a
shared file into his UFNT, he must get the owner’s name
and the file name assigned by the owner. We assume
the user does this by referencing data dictionaries or
printed manuals.

An example of file access is shown in Fig. 4. In this
example, user ‘a’ accesses a file ‘ufn’ that is owned by
‘D’. The owner’s file name is ‘nnn’, and the owner’s
home system is ‘Y”.

20

System X System Y
UGT UGT
y '
1 t
) 1
a r
-—] -—
'
Sy i —
T T
i hl Lo :
1
OFNT UFNT : OFNT UFNT
; i N
' 1 1
1 1 1
ufn [nnn
Y \ addr .
b -
nnn E
'

Fig. 4 Example of remote file access.

e Deadlock Handling
When a user is going to use several shared files at a time,
he faces a deadlock problem. There are 2 ways to cope
with this problem. One way is to assign at one time, all
the resources required with deadlock free. Another way
is to assign required resources dynamically, and to do
backout when deadlock is detected. We used the former
scheme. In our network, TECNET, all files stored are
numbered sequentially. Prior to the start of processing,
the user requests all files needed and File Main Manager
creates a file request command with a list of required file
names. This command is circulated along a fixed loop of
systems. Each FMM checks the availability of requested
files stored in that system, and forwards the command to
the next computer system. As the result of these transfers,
the file request is granted only if all checks of files passed
successfully. Otherwise, the request fails and a failure
message is returned to the user. Fig. 5 shows an example
of the request circulation. Generally, any system can be
skipped if it has no files named in the list.

o File Management Protocol
We provided several commands that are standard in the
network, as shown in Table 1. These commands are
issued by FACI when the user process uses this inter-
face. GETFN is used to get a physical file location,
owner name, and owner file name, and is sent to the
user’s home FMM. OBTAIN is a command to get the
file access right of all files to be used. FREE is used to
disable the file access right. CATALOG is used to catalog
a specified file into his UFNT with a name that he
assigned. PERMIT is used to permit sharing of his file
with other users. All the commands are accompanied by
their corresponding reply messages.

The basic access methods are sequential-access and

first
system

request

Fig. 5 Example of file request traveling.

H. TaNAkA and T. MoTO-OKA

Table 1 Distributed file commands.

command name destination
GETFN Home FMM
OBTAIN FMMs
FREE FMMs
OPEN FMM(s)
CLOSE FMM(s)
CATALOG Home FMM
UNCATALOG Home FMM
PERMIT FMM
INHIBIT FMM
READ BAP/EAP
WRITE BAP/EAP

direct-access. At present, the Virtual Sequential Access
Method is supported on PPS-1, but this can be only
used locally.

The open modes are Input, Output, and Update.

3.3 Multiple Copy Feature

The reliability of the file system can be improved by
having copies of files. We can then access one of the
copies of a file that cannot be accessed because of system
failure. In the network environment, another benefit of
having copies is the communication costs decrease,
because the effective distance to the file gets shorter
when copies are placed at several sites. However, the ex-
istence of copies should be transparent from the user’s
point of view. That is, the contents of all copies should be
consistent, even if many users try to update the file con-
currently.

In the following discussion, we assumed two kinds of
files: logical file and physical file. Logical file is the file
from the user’s point of view and is independent of the
existence of copies. The name of the physical file is used
to indicate each copy of the file.

e Distributed File Directory with Copy Feature
The OFNT used priviously is broken into a new OFNT
and several Physical File Node Tables. The OFNT has
all the location information for the copies. When a user
wants to use a logical file, he selects one of the physical
files, depending on the location of the user process and the
availability of each copy. This selection algorithm plays
an important rule in economizing the distributed access
when some query decomposition of high-level DML is
concerned. Accordingly, we provided a way of getting
all the location information for copies at the time of the
access-right request (OBTAIN). This method will be use-
ful for implementing distributed DBMS. PFNT maps an
owner file name to the location information for a physical
file (disk name, address, etc.). This table is placed at the
site where the physical copy is stored.

e Distributed File Protocol with Copy Feature
When OBTAIN is used, the location information for all
copies is returned with the reply message while the file
access-right check is performed. A new command,
CREATE, creates a physical file and its PFNT. To asso-
ciate the PFNT with an OFNT, the OBTAIN command

Distributed File Management and Job Management of Network-Oriented Operating System 21

is used with a OFNT registration flag set after the
CREATE command. To add a copy of a logical file, the
command, ADDCOPY, is used to make up a physical
copy and registrate it into OFNT. The command,
DLTCOPY, deletes a copy. To get the contents of
UFNT, OFNT, and PFNT at some FMM, the DISP
command is sent to the FMM. CREATE, DELETE,
ADDCOPY, DLTCOPY, and DISP cammands are
added, and OBTAIN/FREE commands are modified
to facilitate the copy feature.

® Procedure of File Creation

When a user creates a logical file with a few copies placed
at several sites, he does it as follows. (In the following
discussion, ‘“‘user” means some system processes, such
as job manager in the real sense.)

1. The user sends a CREATE command to the FMM
of a site where he is going to place a physical file.

2. The FMM makes BAP allocate space to store the
file, registrates the physical address in the PFNT,
assigns a physical file identification number, and
sends the user a responce with the identification
number.

3. The user makes as many file spaces as he wants,
at several sites, by following the proceding pro-
cedure.

4. The user sends an OBTAIN command with its
OFNT registration flag set to the FMM of the
system where he is going to place the OFNT.
This command is followed by parameters, such as
site addresses and physical file identification
numbers, for all copies.

5. The FMM that received the OBTAIN command
registrates the logical file into the OFNT, gets the
access-right, and returns a responce to the user.

6. The user prepares data and writes it into the logical
file, using WRITE commands. For each WRITE
command, data is transferred toward each physical
file space separately.

7. The user sends a FREE command and releases the
access-right.

8. After receiving the responce for the FREE
command, the user sends a CATALOG command
to the FMM at his home site. The FMM registrates
the file in the UFNT with its user’s file name set to
the same name as the owner’s file name.

4. Job Management

4.1 Network Job Management Structure

In the network environment, a job is defined as a set
of processes that are located at several computer systems
and that communicate with each other to perform a

function for the user. Accordingly, the job management

system in the network environment should manage jobs
across the computer boundary. The architecture of the
network job management system of NOS is shown in
Fig. 6. Each job is managed by a Master Job Manage-

System Y

H)

Job Processes

Fig. 6 Structure of distributed job management system.

ment Process (MJMP) and several Local Job Manage-
ment Processes (LJMPs), which are located at each
computer system in which some job processes of the job
are running. The MJMP manages all LIMPs and is the
center of the job management. The hierarchy structure of
MJIMP and LJMPs are made up at job creation time for
each fob with the help of a logger process. We designed
a network job control language to define these network
job structures.

4.2 Network Job Control Language

We provided a set of job control statements that are
enough to realize the arbitrary structure of a network job
on the computer network. The JCL is shown in Fig. 7.
The JOB statement defines a job for which the home site
for file management is specified by {(sitename). When
the user pushes an attention key, a logger is connected
to the user keyboard. The MIMP for the user is created
at the log-in site when the user keys in a JOB statement.
The FD statement defines files that are needed for the
job. (filedefname) defines a name used in the user pro-
gram. In (unitstatmnt), the description ‘UNTI=
{deviceinf), UNT2=(deviceinf)’ is used when the user
wants to create a logical file with two physical files,
UNT+ is used when the user wants to add one more
copy, and UNT— is used to delete a physical file. The
EXEC statement defines a program to be executed as a
process specified by {processname). This statement

$JOB username [@{sitename)]

$FD [<filedefnamed] [,FN=(flname)] [,cunitstatmnt?]
[,SP=¢space>] [,DISP=(disposition>] [,FCB=<fcbparam)]

SEXEC [(deviceinf>] [,<¢flname>] (<processnamed)

[@¢sitename)] [{execorder>)

$STEP [<filewaitmode>] A

SCAT (use:filename),(m-'nerfilename).(ownexname)@(sxtename)

SUNCAT <userfilename)

$PERMIT < filename), [<username)], [¢accessmode)]

S$INHIBIT <filename)>, [<username>]

S$QUIT ¢ pnamelist)

SABORT ¢pnamelist>

SALLOCATE < memorysize)> [@<sitename?]

SEND

where, ¢ flnamed::=[%<¢ownername>.]<filename? I+
(unitstatmnty::=UNT1l=<diviceinf){,UNT2=<{(deviceinf>
[,UNT3=--]]] UNIT=<(deviceinf >| UNT+=(deviceinf>
|UNT-=<¢deviceinf>
<dispositi ::=(Lcreatemode?,(keepmode)}
{keepmode) : :=KEEP| DEL
¢(fcbparamy::=([<fileorganization>], {<(recordform>],

[¢blocklength>], [(recordlength)]
<fileorganizationy::=PS|IS|DA
¢deviceinf)::=[@(sitename>.]}<devicename) [#{device-

ber>} [.({vol ber> [#<fileseq
(devicename?>: :=DKJ MT|CR/ LP| TW| TR| DP
(execorder>:)}/ [Kpnamelist>] .
(pnamelist)::=¢{processname) | (processnamey ;{pnamelist)

<filewaitmode> : : =<WAIT|NOWAIT

Fig. 7 Network job control language syntax.

22

fa, a, @pPPS

fb, b, @PPS/a
fc, c, @OKI/
fa, 4, erpPs/b,c

SEXEC
‘E. $EXEC

O,
) S
@

Fig. 8 Example of process execution order control.

$JOB USR1EOKI

SALLOCATE CORE=1080KI

$ALLOCATE PRCS=01@PPS

$FD OLDF, FN=MSFl, DISP=(OLD, DEL)

SEXEC , PLIB(PGM1)@OKI

$FD NEWF, FN=MSF2, DISP={NEW, CAT),
UNIT=@PPS.DK.SYS, SP=10

S$EXEC , ELIB(PGM2)e@PPS/

$STEP

SEND

Fig. 9 Example of network job.

also can define the order in which job processes are to be
executed, so that this process is activated after processes
specified by (pnamelist) are executed. The STEP state-
ment defines the end of a job step. When the MJMP
interprets this statement, it gets all the files needed and
activates the job step. CAT and UNCAT are used to
catalog or uncatalog a file. PERMIT and INHIBIT are
used to permit or inhibit shared access by users defined
by (username). QUIT interrupts the processes defined
by {pnamelist). ABORT stops the execution of processes
specified by {pnamelist). The ALLOCATE statement
allocates an address space for the job and creates an
LIMP at site ¢sitename). END defines the end of job.
Fig. 8 shows an example of controlling the execution
order of processes. Fig. 9 shows a very simple example of
a job that reads file data from an OLDF at site OKITAC
and writes the processing results into NEWF at site PPS.

4.3 Distributed Job Management Protocol

The communications among MIMP, LIMP, and the
logger define the distributed job management protocol.
We provided 12 basic commands, as shown in Table 2.
These commands are followed by their appropriate re-
sponses. When a job is started, MJMP sends a ‘request to
start job-process’ command to LJMP and indirectly
controls the process. LIMPs monitor job processes that
are local to the site, provide management information
reports, such as accounting and termination status of
each process, and send them to MJMP by a ‘report of
job-process end’ command. The division of job manage-
ment work between MJMP and LIMPs is made so that
local management tasks are dedicated to LJMPs, and
others that are common to all systems are left to MJMP.

H. TaNnaka and T. MoTo-0KA

Table 2 Distributed job control commands.

command name source destination
set MJMP initial data Logger MIMP
request to create LYMP MIMP Logger
request to remove LIMP MIMP Logger
request to remove MJMP MIMP Logger
set LIMP initial data MIMP LIMP
request to create jobprocess MIMP LIMP
request to start jobprocess MIMP LIMP
request to stop jobprocess MJIJMP LIMP
request to remove jobprocess MIMP LIMP
request to abort jobprocess MIMP LIMP
request to quit jobprocess MIMP LIMP
report of jobprocess end LIMP MIMP

Accordingly, this protocol is independent of specific
implementation.

5. Reliability Consideration

5.1 Principles

Up to this time, reliability technologies of computer
systems have been applied only to a single computer
system. But, in a network environment, each operating
system should take into account the failure of other
systems, and should be more secure against many kinds
of disturbances. Our principles for these problems is to
preserve the autonomy of each system and to manage
failure with distributed facilities.

To realize these principles, the basic structure of NOS
is based on the interprocess communication of message
oriented. Processes cannot send or receive data without
the permission of others. Accordingly, a failure of one
process is well shielded from the others. This inter-
process communication facility is the only way of inter-
system interaction, so the autonomy of each system is
preserved. The process name registration scheme is to
make the interprocess communications secure statically,
and efficient in terms of communication overhead. This
scheme is also substantial for keeping independence
between programs and processes.

5.2 Reliability Enhancement of Distributed File Manage-
ment System

We introduced a multiple copy feature to make the
distributed file usage invulnerable. But, other enhance-
ments should be implemented to make the distributed
file management system itself more reliable. These
enhancements include:

1. Distributed file directory enhancement

2. Consistent update mechanism
In case a system failure occurs when the user is reading a
file, the access history of the file should be kept in the file-
using system in order to change the physical file dynami-
cally, though the location information of alternative files
can be gotten easily, because it was set in the local area of
FACI when the OBTAIN command was used.

Distributed File Management and Job Management of Network-Oriented Operating System 23

In a multiplicated-files environment, a network or
computer system failure can cause inconsistency of file
content. One inconsistency is internal to the file; that is,
incorrectness of each file’s contents. Another inconsist-
ency is external, which means there are discrepancies in
the contents of copies. Because these inconsistencies occur
when the file is updated, some corporation rule among
copies is needed to preserve consistency. For example,
we can decide whether the update transaction can be
forwarded or not depending on the condition:

I. Whether the user can communicate with some

specified site.

2. Whether user can communicate with more than

half sites which store the physical files.

In any case, if the conditions are not met, the transaction
is aborted. Each update transaction is assigned, at file-
request stage (OBTAIN), a sequence number that iden-
tifies uniquely the processing order of transactions for
the file. The update operation should be done for all
copies, though some systems that store the copy may
have failed, and the update operation cannot always
be performed at exactly the same time. Accordingly, the
transaction and the sequence number are kept at some
sites, and can be forwarded to the failed systems as soon
as the systems recover. To ensure that files are updated
consistently, even when failures occur, we should provide
mechanisms, such as the “Two Phase Commit” proce-
dure developed by Lindsay of IBM [5].

5.3 Failure Handling of Distribured Job Management
System

Failures can be classified as follows:

1. Internal Failure of a Job Process
The job process can’t proceed because of a programming
error, resource shortage, etc. In this case, the termination
notice is sent to the LIMP. When the job process enters
an infinite loop, the timeout event is activated, and the
LIMP forces the job process to stop. The LIMP sends
the termination status to the MJMP. Depending on the
status, the MJMP sends the ‘STOP’ command to all
LIMPs, receives responses with status information, and
terminates the job.

2. Computer Systems Failure
When a computer system that is processing a job fails
because of hardware damage or the operating system
being down, the MIMP or LIMPs detect the condition
by the timeout because the MIMP and LIMPs exchange
‘Are you ready? and ‘Yes I am’ messages periodically.
An LIMP failure, is detected by MIMP, which sends an
‘ABORT’ or a ‘WAIT TILL NOTIFIED’ command to
all LIMPs. The WAIT TILL NOTIFIED command
makes each LIJMP save all the job processes, and the
LIMP returns to MIMP a key in the response. The MIMP
checks the recovery of the failed system and restores the
job by the ‘RESTORE’ command when appropriate.
RESORE is accompanied by the key and is sent to the
loggers of all systems concerned.

When the system that has the MJMP fails, the corre-

sponding LIMPs detect the failure. Each LIMP saves
the final status information of job processes with the
identifier of the MJIMP. The resynchronization of pro-
cesses is accomplished by message sequence number.
When the failed system recovers, the latest message
number that was used by the restored program to com-
municate with some other system (A, for example) can be
defined from a journal tape. This message number is
passed from the failed system to system (A), which
resets the processing status to just before the beginning of
the next communication statement. Both systems can
then start processing arbitorary after that.
3. Network Failure

Handshaking between the MJMP and LIMP are inter-
fered with in this failure. This condition detected by the
MIMP and LIMP through the timeout event, or by a
failure report from the communication control processor.
The failure-handling procedure is the same as in failure 2.

6. Implementation

6.1 Languages

To implement NOS for the OKITAC 4300C, we de-
veloped an assembler language that is enhanced with
macro instructions and modified to provide appropriate
code for our program loader. This assembler is a cross
assembler written in PASCAL on the HITAC 8800/8700
connected by a 2400-bps communication line. For PPS-1,
we developed a micro assembler and used it to imple-
ment the OS nucleus and device control programs that
are closely related to hardware. Other programs are
implemented by a language called NPLAN, which is an
ALGOL-like high-level language and is based on a
language called PLAN that was developed by Takeichi
[4]. The NPLAN compiler, written in PASCAL, produces
V-codes, which are interpreted by a microprogram of
PPS-1. We added a few primitive operations to PLAN so
that NPLAN can be used as the basis to write programs
in the network environment. Statements related to the
primitive operations are compiled into V-code ‘KCALL’
(kernel call), the parameters of which include operation
identifier, process name of opposite side, message iden-
tifier, buffer identifier, etc. The V-code interpreter,
written in microcode, expands the KCALL to corre-
sponding primitive operations written in microprogram.
For example, a SEND statement can be written as:

Cstatus: =Send (Hostname, Processname, Waitmode,

Message)

Hostname and Processname define the destination
process, and Waitmode specifies whether this process
(source) waits for the end of the send communication
event or processes the next statements. ‘Send’ is an
internally-defined function procedure. Cstatus, therefore
is the resulting status of the Send execution. The V-code
interpreter is a virtual stack machine that is provided for
system portability. The size of this interpreter is about
1500 steps in the microprogram.

24

6.2 Implementation Results

Table 3 shows an implementation result of NOS.
Implementation is performed for three machines:
OKITAC 4300C, PPS-1, and FACOM R. A simplified
version of the NOS nucleus is implemented on the
FACOM R. The distributed file manager and job man-
ager are implemented on the OKITAC and PPS-1. The
HITAC 8800 is handled as a virtual file system through a
process implemented on the OKITAC. Table 3 shows the
result of two versions of the distributed file manager.
The ‘Single’ version does not have the Copy feature; the
‘Multi’ version has the Copy feature at the PFNT level.
Multiple UFNT and OFNT support, consistency maint-
enance, and job recovery feature are not yet supported.
By implementing the Copy feature, the size of FMM
increased 309, ~409%, and that of FACI increased 709,
for the OKITAC, and 4009 for the PPS-1. This 4009,
size increase includes the increase of code as a result of
improving the user interface. The amount of code for
the PPS-1 program is in terms of microcode or V-code
(16 bit/step). The processing time of user file commands
can be divided into two parts. One part is the time used
in the FACI routine, and the other part is the time used
in the FMM process. These times are shown in Tables 4
and 5, respectively. The time shown in Table 5 doesn’t
include the time needed for interprocess communication
(about 2.0, 8.5, and 41 ms for PPS-local, OKITAC-local,
and PPS-OKITAC communications). The difference in
time values between the systems shown in Table 4 is
due mainly to cycle-time difference (1: 6 for PPS vs
OKITAC), because the FACI routine of PPS is written
as a microprogram. Because the FMM of PPS is written
in NPLAN, the measured value of the PPS processing
time shown in Table 5 is very high compared to that of
the OKITAC, due to V-code interpretation. If the values
are expressed in terms of processing steps, the difference
between systems is fairly small, as shown in the tables.

7. Conclusion

In this paper, we presented the structure of the net-
work oriented operating system and the feasibility
shown through implementation results obtained with
the experimental computer network TECNET. The
elements of NOS are the system nucleus, which enables
interprocess communication beyond machine boundary,
the distributed file management system, which permits
multiplicated files, and the distribured job management
system, which expands the concept of local processing to
a virtual network environment yet preserves the auton-
omy of each local system.

Following are projects that should be completed in the
future:

1. Implementation of reliability feature other than

the multiple physical file feature

2. Development of network oriented programming

H. TaNakA and T. MoTO-OKA

Table 3 NOS element program size.

OKITAC 4300C PPS-1
program microprogram V-code
element single | multi
single | multi | single | multi
nucleus 3700 3000 4000
(comm.) 3400 1600 (system data)
(others) 1600 400
FMM 1900 | 3100 4500 | 6100
BAP 1550 4000 717 719
FACI 900 1550 141 805
MIMP 4000 5000
LIMP 500 1300
Logger 750 500
Loader 1500 250
Table 4 Processing steps and time for FACIL.
routine no. of PPS-1 OKITAC 4300C
hame Pfiles | geps | time ms steps time ms
1 330 0.17 350 1.05
OPEN 2 40 | 024 560 1,68
1 110 0.06 90 0.27
CLOSE 2 180 0.09 160 0.48
1 70 0.04 70 0.21
READ 2 130 0.07 140 0.42
1 70 0.04 90 0.27
WRITE 2 140 0.07 160 0.48
1 70 0.04 90 0.27
CHECK
2 160 0.08 210 0.63
S R IRt M
Table 5 FMM processing steps and time.
PPS-1 OKITAC 4300C
command
steps time ms steps time ms
GETFN 520 8.8 480 1.4
OBTAIN 1350 23.0 1250 3.8
(cat. in OFNT)
OBTAIN 940 16.0 960 29
(without cat.)
FREE 520 8.8 510 1.5
(normal)
FREE 740 12.6 650 1.9
(uncat OFNT)
CATALOG 510 8.7 500 1.5
UNCATALOG 460 7.8 320 1.0
PERMIT 580 9.9 460 14
INHIBIT 550 9.4 400 1.2
ADDCOPY 620 10.5 370 1.1
DLTCOPY 630 10.7 360 1.1
CREATE 790 13.4 570 1.7
DELETE 620 10.5 380 1.1
DISP 650 11.1 610 1.8
OPEN 1350 23.0 370 1.1
CLOSE 450 1.7 190 0.6
initialize 7640 129.9 10 0.0

Distributed File Management and Job Management of Network-Oriented Operating System 25

language

3. Development of a high-level, job-control lan-
guage for the network environment

4. Extension of the distributed file management
system toward a distributed data base manage-
ment system.

Acknowledgement

We acknowledge the following people for their work
in developing the elements of NOS on TECNET. F.
Wagai, N. Yamanouchi, and A. Nakagawa (now with
Fujitsu) implemented the system nucleus for each
TECNET computer. The distribured file management
system was developed by K. Horita of Fuji Electric Co.,
E. Aoki of Fujitsu, M. Horiguchi (now with Hitachi)

and K. Honda (now with Fujitsu). The distribured job
management system was developed by N. Kurobane
(now with Fujitsu), M. Oda of Fujitsu, M. Horiguchi,
K. Honda, and Y. Yamanouchi. We also thank the many
people of our laboratory for their useful discussions.

References

1. TanNaka, H. and MoTto-oka, T. An Experimental Computer
Network TECNET, Papers of Technical Group on Electronic
Computers, IECE Japan, EC-73-57, (Dec. 1973) (In Japanese).

2. Mot0-0KkA, T. and YAMAMURO, Y. Polyprocessor System PPS-1,
JIP 15, 7, (July 1974) 557-564 (In Japanese).

3. TanNaka, H. and Moto-okA, T. Network Oriented Operating
System-Process Control and Distributed File in TECNET, Pacific
Area Computer Network Symposium, (Aug. 1975) 171-179.

4. TakeicHi, M. A Mini Compiler of a Mini Language, bit, 6,
No. 8-13, (1974) (In Japanese).

5. LiNDpsay, B. G., et al. Notes on Distributed Databases, Re-
search Report, IBM Research Lab. San Jose, RJ2571, (June 1979).

