Development of a High Performance Virtual Machine
System and Performance Measurements for it

Hibenorl UMENO*, KAZUHIKO OHMACHI*, AKIRA HINO*,
and JuNicHl IMURA**

Methods to enhance performance of more than one Virtual Machine in a Virtual Machine System (VMS) are
presented. These include the implementation of V=Resident Virtual Machines, where memory is resident and
real addresses are continuous, and of a fast process for Input/Output simulation (Fast I/O simulation).

A VMS’s practicality depends on its performance, which is decreased by its CPU overhead. It is shown that
a VMS’s 1/O simulation overhead is dominant within its total CPU overhead. Fast I/O simulation reduces the
I/O simulation overhead.

Development and use of V=Resident Virtual Machines and Fast I/O simulation in a VMS has been under-
taken on a HITAC M series computers, and performance measurements were obtained for this report.

Performance data which confirm the effectiveness of Fast I/O simulation are presented. Fast I/O simulation
reduces a VMS’s CPU overhead by about 40 % ~ 509 and significantly reduces elapsed time expansion for V=
Resident Virtual Machines and for V=R Virtual Machine. Memory of V=R Virtual Machine is resident and
its virtual addresses=real addresses except in the prefix area. As a result, performance improvement supports
more than one High Performance Virtual Machine and makes it possible to apply a VMS to gradual system

transition for high traffic on-line systems.

1. Introduction

A Virtual Machine (VM) is a functionally equivalent
copy of a real host computer in which a statistically
dominant subset of a virtual processor instructions
execute directly on the real host processor [1]. A Virtual
Machine System (VMS) consists of many VMs which are
running concurrently. A Virtual Machine Control
Program (VMCP) is a control program of a VMS,

Each user of a VMS can select a different Operating
System (OS) because different OSs can run concurrently
in different VMs. Virtual Machines are commonly used
for system development and testing, and to obtain the
services of more than one OS from a single real host
machine.

As an example of the latter, VMs are used for gradual
system transition. This means that by serving two
different OSs (i.e. an old OS and a new OS) concurrently
in a single real machine, users can gradually transfer from
the system under the old OS to the system under the new
OS. It costs users a vast sum of expense over a short term
to convert all programs and files of the old system at
once, when they could be used without conversion for
some time. Such conversion also brings about reduced
reliability. Users can avoid these problems by using VMs
for gradual system transition. In on-line systems, such as
for banking and information retrieval, gradual system
transition is often required.
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The practicality of VMS is dependent on its CPU
overhead and so, much effort have been made to reduce
this overhead [3, 4, 6]. Representative examples of these
are VM Assist (VMA) of IBM’s VM/370 [3], IBM’s
VM/370 System Extensions (SE) [4], and VMS of Hitachi
Central Research Laboratory (HCRL) [6]. The VMA of
VM/370 is a firmware implementation designed to
enhance the execution of privileged instructions and
supervisor calls associated with VMs. In most cases
effects of the VMA are remarkable, and it reduces
VMCP’s CPU overhead by 699% to 899 for some
benchmark jobs [3].

In IBM’s VM/370 SE and the VMS of HCRL, steps
are taken in order to reduce the CPU overhead caused
by switching virtual storage of an OS in a VM. Namely,
these steps attempt to reduce the CPU overhead of a
VM running a multiple virtual storage OS, and they
do not address CPU overhead reduction for a VM
running a single virtual storage OS which rarely switches
its virtual storage. Other methods taken in HCRL’s VMS
have considerably reduced the CPU overhead but the
performance can be enhanced for only one VM (i.e.
V=R VM: explained later).

In spite of these efforts, it is difficult to use VMS for
gradual system transition for high traffic on-line systems.
The reasons are as follows.

(1) In many cases, an OS used for an on-line system is

a single virtual storage OS or a real storage OS,
to decrease the OS overhead. In such cases,
methods that reduce the VMS’s CPU overhead
caused by switching multiple virtual storage of
an OS in a VM, have a little effects on the on-line
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system.

(2) On-line systems processes issue much more fre-
quent file I/Os than those for batch systems, and
the heavy VMS’s 1/O simulation overhead causes
serious performance degradation.

(3) At least two high performance VMs are needed
because at least two on-line systems may run
concurrently in a single real machine. There
exists only one high performance VM in a
traditional VMS, however.

In order to use the VMS for gradual system transition
for on-line systems, the VMS’s CPU overhead has to
be greatly reduced for more than one VM to guarantee
proper response time for high traffic on-line systems.
Therefore, several reduction methods are proposed here
for an environment where necessary memory is available.

(a) In order to support more than one high per-
formance VM, V = Resident VMs are introduced.
The V=Resident VM has resident memory, real
addresses which are continuous.

(b) Fast I/O simulation that greatly reduces I/O
simulation overhead for normal I/O process is
proposed and developed.

Performance data will be presented in Sec. 5 and it will

be shown that VMS’s performance is improved enough
for the above-mentioned purpose.

2. Virtual Machine System (VMS)

Virtual Machine System gives mutiple users execution
environments that have the same architecture as a real
host computer. The architecture of a real computer, as
discussed here, has the following characteristics.

(1) Central Processing Unit (CPU)

(@) Two processor states, called a supervisor state

and a problem state.

(b) Privileged instructions, which can be executed
only in the supervisor state.

(¢) A means of addressing memory called segmenta-
tion and paging.

(d) A dynamic address translation feature, which
translates virtual memory address into real
memory address.

(e) A prefix area, which is in real memory and con-
tains control information for various hardware
interruptions.

(2) I/O channel units (simply called channels)

(@) I/O operations are started by CPU Start 1/O
instruction, and the Condition Code is set to
indicate whether the I/O operations are started
normally or not.

(b) Channels work concurrently with the CPU after
normal start.

(c) Chennels request I/O interruptions to the CPU
in order to signify normal or abnormal termina-
tion of the I/O operations.

(d) The CPU has I/O masks which indicate whether
the CPU is enabled for the I/O interruption. If

the CPU is enabled, an I/O interruption occurs,
and control information of the I/O interruption
is stored in the prefix area.

(¢) Channels execute CCWs (Channel Command
Words) which are commands given to the
channels by the CPU. A CCW’s execution
sequence is called a channel program. A train of
CCWs which are physically contiguous is called
a channel program segment. Each segment is
connected by branches in the channel program.

(f) A channel Status Word (CSW) is stored in the
prefix area at the initiation of channel or at the
I/O interruption. This CSW contains channel
status information.

(g) Channels do not have a dynamic address transla-
tion feature. Namely, channels cannot directly
execute CCWs on the virtual storage (virtual
CCWs). Virtual CCWs have to be translated to
functionally equivalent real CCWs by programs.
This process is called CCW-translation.

(h) Channels have an indirect addressing feature.
Channels can execute a CCW, data address of
which is address of an area that contains data
buffer addresses. This area is called Indirect Data
Address Words (IDAWs).

VMs also have the two processor states described for
CPUs above, complete instruction sets, storage, and
prefix areas and so forth. The mechanisms used by
VMCP to implement a VM fall into three categories:
processor simulation, memory simulation, and I/O
simulation [5].

Processor simulation is accomplished by running VM
programs on a real processor. Nonprivileged state in-
structions are executed directly by the processor. VMCP
traps privileged instructions and simulates them in soft-
ware.

Memory simulation is performed by providing a
virtual memory to each VM. This virtual memory
appears to be a dedicated real memory complete with
address translation hardware. An OS in a VM manages
this memory as if it were real. Therefore, when an OS
in a VM is a virtual storage OS (VOS), 3 level memory
hierarchy is constructed, where:

level 1 memory: real memory of a real processor;

level 2 memory: memory ofa VM, (An OS ina VM

regards this as real memory);

level 3 memory: virtual storage created by VOS in

a VM.

Simulation of the dynamic address translation feature
is performed by the VMCP using real hardware and
special address translation tables (called shadow tables)
that map level 3 memory addresses into level 1 memory
addresses.

Input/Output simulation is performed in this way.
The VMCP traps virtual Start I/O instructions, carrying
out the CCW-translation and starting a real I/O
operation on behalf of the user. After the real I/O
interruption occurs, the VMCP translates real status
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information into virtual status information and reflects a
virtual 1/O interruption to the VM.

3. CPU Overhead in VMS

Major factors concerning CPU overhead in VMS and
traditional reduction methods for the CPU overhead
are described here. Norms for evaluating VMS’s per-
formance are introduced, and I/O simulation overhead
dominancy is shown.

3.1 Major CPU Overhead Factors

(1) Overhead due to simulation: VMCP simulates
privileged instructions issued by an OS in a VM,
and also simulates the interruptions that belong
toa VM.

(2) Overhead due to double management of system
resources: -An OS running in a VM manages its
virtual resources and the VMCP also manages
real system resources. In this environment, double
management of system resources can occur.
System resources include CPU, memory, I/O
devices, etc. A typical example of this type is
double paging. This means combination of pag-
ing for each level, that is, the VMCP performs
paging between level 2 memory and level 1
memory while VOS in a VM performs paging
between level 3 memory and level 2 memory.

(3) Overhead due to management of system
resources: the VMCP manages its own memory
and devices as an ordinary OS does.

3.2 Traditional Methods for Reducing VMS’s CPU
Overhead

Many means to reduce the CPU overhead have been
undertaken before now. The traditional methods are
listed below.

(1) Firmware assist: The assist emulates certain
VMCP processes that simulate the instructions
issued by VMs. A typical example is VM Assist
of VM/370 [3].

(2) Handshaking with OS: An OS in a VM does not
recognize that it is running in a VM environment.
Handshaking changes this view for an OS, in
that the OS is given the information that it is
executing in a VM and can take certain actions
in order to improve performance [3].

(3) Restrictions on usage of system resources: Real
system resources can be dedicated to a VM to
prevent the double management of system
resources. As examples, devices may be dedicated
to a VM and an area of real memory can be
dedicated to a VM as in V=R VM, In the V=R
VM, the level 2 memory is thoroughly resident in
the level 1 memory and the level 2 memory ad-
dresses equal the level 1 memory addresses,
except in the virtual prefix area.

Performance of the V=R VM can be enhanced, since
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the double paging and CCW-translation in the I/O
simulation can be eliminated. However, only one V=R
VM can exist in the single real host computer, because of
its memory address characteristics V=R.-A VM that is
not the V=R VM is called a V=V VM.

This paper takes for granted that the above-mentioned
traditional reduction methods have already been taken.
In addition, it supposes that the following two methods
have also been taken.

(1) VMA: VMA here contains functions equivalent

to those of the VMA of VM/370 and additional
4 privileged instructions which are frequently
used in on-line systems.

(2) Dedicated devices: All disc devices, magnetic
tape devices for user files, and communication
lines for user terminals are supposed to be
dedicated.

An OS in a VM is supposed to be a single virtual
storage OS, or a real storage OS, for the reasons des-
cribed in Sec. 1. Therefore, CPU overhead due to
switching OS’s virtual storage in a VM can be neglected.
However, the reduction methods described in Sec. 4 are
also effective for multiple virtual storage OS in a VM.

Paging in VMS will increase CPU overhead to the
extent where it can not be practically applied to on-line
systems. Thus, an execution environment where real
memory size is sufficiently large and the paging of
VMCP almost does not occur, is considered as a premise
in this paper.

Traditional reduction methods have considerably
reduced the VMS’s CPU overhead. The extent of
reduction is not yet sufficient, however, and it is still
difficult to apply VMS to gradual system transition for
high traffic on-line systems, as described in Sec. 1.

3.3 Norms for Evaluating VMS’s Performance

Performance of VMS is measured by an elapsed time
expansion ratio (Er) and CPU overhead of VMS (Cr).

Tv
Er= dT' x 100 (%)
v

T
Cr=‘17; x 100 (%)

aT:=T:—T?

dre=T!-T?

T:=elapsed time in a VM.

T?=elapsed time in a real (i.e. bare) machine.
T?=CPU service time in a VM.

T?=CPU service time in a real (i.e. bare) machine.

The quantity dT?® consists of processing time for
VMCP, and firmware assist such as VMA and expressed
as follows.

dTZ=; ; are’G,j)-Ny;
dre@, )=T2G, /)~ TG, §)
T=(i,j)=simulation time of event i, under condition
jin VMS.
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Table 1 Simulation Overhead of each event (non-Fast I/O).

# i j Events Conditions Simulatio;zg;/_?{bead
olo| o Start 10 CoR M, normal case, no 20~ 50
1 1 V=V VM, normal case 50~110**
2 |1} o 1/O Interruption X:(ljlcxvl\-/[frx;gl;ligzlofrmlnatlon, %f—z%=0.8~1.0"
3 1 V=V VM, normal termination ;:i:—g:i—:]"=0.6~0.7“"2
4 2 0 LPSW: Load Program Status Word VMA is successful 2.91
5 1 Load Wait PSW 130~220
6 3 0 STOSM : Store then OR System Mask VMA is successful 2.16
7 1 STNSM: Store then AND System Mask 1/O interruption pending 150~170
8 4 0 LRA: Load Real Address VMA is successful 9.00
9 5 0 RRB: Reset Reference Bit VMA is successful 5.13
10 6 0 SCKC: Set Clook Comparator VMA is successful 7.75
—
11 1 External Interruption Pending 140~160

*1  Total Number of CCW,=10, Number of CCW, of last channel prog. seg=>5

*2 T:b:()

T2(i, j)=execution time of event i, under condition
Jj in a real machine.
N,;;=the number of occurrences of event i, under
condition j.

Table 1 shows the simulation overhead of each event
i, under condition j, and reveals that:

(1) If VMA fails or does not support event (i, ),

then, simulation overhead T%°/T** becomes 20~
220 for it;

(2) If VMA succeeds for event (i, j), then simulation

overhead T2"/T* becomes 2~9 for it.

This means that if the VMA'’s feature is not supplied,
the simulation overhead of privileged instructions is the
primary factor of the VMS’s CPU overhead.

Because VMA significantly reduces the simulation
overhead [3), simulation overhead except for I/O simula-
tion (events i=0, 1 in Table 1) becomes the secondary
factor in the total CPU overhead.

3.4 I/O Simulation Overhead

Input/Output simulation overhead is expressed in
this way.

dT°=Y dT(0,)- Noj+ ¥, dT2(1, ) Ny
7 i

Table 1 shows that this I/O simulation overhead will
be the primary factor of the total VMS’s CPU overhead
if the VMA’s feature is available.

Input/Output simulation overhead ratio over total
VMS’s CPU overhead is defined as follows.

ari°

T =5 x 100 (%)

This I/O simulation overhead ratio T7? for several
benchmark jobs in Table 2 is shown in Fig. 1. This figure
reveals that I/O simulation overhead forms 609 to 85%
of the total VMS’s CPU overhead. Namely, I/O simula-
tion is dominant in the VMS’s CPU overhead. Therefore,
in the case of applying the VMS to on-line systems that
frequently access many files, VMS’s performance will
be seriously reduced.

The measurements in Fig. 1 were conducted under the
following conditions.

(1) The V=R VM and V=Resident VM were used.
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The latter will be introduced in Sec. 4 as a high
performance VM different from the V=R VM.

(2) In the V=R VM a single virtual storage OS
(VOS2*!) was running and in the V=Resident
VM a real storage OS (EDOS-MSO*?) was
running.

(3) All the virtual channel programs were translated
in the V=R VM and in the V=Resident VM.

(4) Fast I/O simulation which is a CPU overhead
reduction method, and is described in Sec. 4, was
not used.

4. Methods for Supporting More Than One High Per-
formance VM

Two methods have been developed to support more
than one high performance VM:

(1) V=Resident VMs;

(2) Fast I/O simulation.

These methods are described in the following sections.

4.1 V=Resident VMs

At least two high performance VMs are required for
implementing gradual system transition. The V=R VM
will be used for that purpose, because double paging and
CCW-translation overhead can be eliminated in it.
However, only one V=R VM can exist in the system,
as is stated in Sec. 3.2.

As high performance VMs different from the V=R
VM, V=Resident VMs have been introduced. The V=
Resident VM has level 2 memory that is thoroughly
resident in the level 1 memory and has the following
address characteristics, as illustrated in Fig. 2:

level 1 memory address

=level 2 memory address+a

The displacement a(+#0) is a fixed page number, and
given to each V=Resident VM at VMS’s system genera-
tion.

The V=Resident VMs require shadow tables as
before, however, they can eliminate double paging,
since their memory is resident in real memory. Many
V=Resident VMs can be defined as long as the real

*!yirtual Storage Operating System 2: OS on the HITAC M
series computers.

*2Extended Disc Operating System with Multi-Stage Operations:
same as above.
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memory size permits. Moreover, CCW-translation over-
head for the V=Resident VM can be reduced through
its memory address characteristics. The CCW-translation
overhead is dominant in I/O simulation time, as
illustrated in Fig. 3-(a). For this reason, the VMS’s
CPU overhead cannot be decreased enough, unless the
CCW-translation overhead is reduced. Details con-
cerning reduction of the CCW-translation overhead are
described in Sec. 4.2.2.

4.2 Fast I/O Simulation

4.2.1 General I/O Simulation and Fast I/O Simulation
The I/O simulation process of VMCP in general cases,
is very complex, because it contains not only the process
for normal cases but also for abnormal cases. The latter
contains many complex error recovery processes for
various I/O devices. However, among general cases,
normal cases occur more frequently than abnormal cases.
In normal cases, I/O operations are started normally,
then, they terminate completely and I/O termination
interruption occurs.
Letters (a), (c) in Fig. 3 show the general I/O
simulation process for normal cases and processing time
for each processing phase which is calculated by its
execution steps. This figure reveals that:
(1) The CCW-translation is the primary overhead of
Start I/O simulation (Fig. 3-(a)-(2));

(2) Reflecting the I/O interruption in the VM is the
primary overhead of the I/O interruption simula-
tion (Fig. 3-(c)-(2), (4)).

In Sec. 3.4 it is stated that the I/O simulation is
dominant in the total CPU overhead of YMS. In order to
reduce I/O simulation overhead, new short cut modules
have been created for normal processing in I/O simula-
tion. They are called Fast I/O simulator and Fast dis-
patcher, and are illustrated in Fig. 4. Normal I/O
simulation cases are always handled by the fast logic of
the I/O simulation (i.e. Fast I/O simulation). When
exceptions (e.g. Start I/O Condition Code is not 0, or
1/O errors, or I/O devices that Fast I/O does not process)
are detected, control is transferred to the general logic
and the remainder of the process is entrusted to it.

4.2.2 Reduction Methods in Fast I/O Simulation
4.2.2.1 The Fast I/O Simulation Logic
In Fast I/O simulation logic, except for CCW-transla-
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Fig. 2 Memory Mapping of V=Resident VM, and V=V VM.
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tion, the following I/O simulation overhead reduction
methods are taken.

o

)

Restrictions on the device usage: For the logical
simplicity Fast I/O simulation is applicable only
to dedicated devices (Magnetic discs, tapes,
lines, etc.) which are frequently used in on-line
systems.

Static acquisition of various I/O control areas:
In order to reduce CPU overhead, various I/O
control areas are acquired at system initiation of
VMCP or VMs. Their fields’ value are also fixed
at the initiation if possible. The reduction in Fig.
3-(b)~(1) is largely due to this. The general I/O

&)

@

®

logic usually acquires them on demand.

Local Memory management: The Fast I/O logic
manages its own 1/O work areas for itself because
of elimination of the global VMCP memory
management overhead. The reduction in Fig.
3-(d)-(3) is largely due to this.

Fast translation from real to virtual addresses:
The real addresses of 1/O control areas, the CCW
address in the CSW, etc. have to be translated
into the virtual addresses in a virtual I/O inter-
ruption simulation process. This translation is
made faster with the I/O control table which
contains the correspondence of the real addresses
to virtual addresses. The reduction in Fig. 3-(d)-
(2), (3) is largely due to this.

Fast I/O interruption reflection: In the general
logic, the general I/O simulation reflects the I/O
interruption in a virtual device, including a virtual
channel, and the general dispatcher reflects it in
the virtual prefix area and clears the interruption
information in the virtual device if the VM is
enabled for it. The Fast I/O simulator contains
the I/O simulation logic, and a simple dispatching
logic (Fig. 4). Therefore, the I/O interruption can
be directly reflected in the virtual prefix area
without being reflected in a virtual device if the
VM is enabled for it. The reduction in Fig.
3-(d)-(2), (4) is largely due to this.

Fast I/O simulation is applicable not only to the V=R
or V=Resident VM but also to the general V=V VM.
This Fast I/O simulation has been implemented and is
estimated to reduce the I/O simulation time except CCW-
translation time by 509 to 75% in the V=R or V=
Resident VM, and by 379, to 449 in the general V=V
VM.
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4.2.2.2 General CCW-Translation Process

The CCW-translation is the primary overhead in the
I/O simulation time as illustrated in Fig. 3-(a). When
all the pages of a VM are resident in the level 1 memory,
major factors of the CCW-translation overhead become
as follows. Each time a virtual CCW is accessed,

(1) VMCP needs to look up the address translation
table, since the next CCW in a channel program
may cross the page boundary.

(2) VMCP needs to look up the address translation
table when it translates a data address of a virtual
CCW into a real address.

(3) VMCP has to check if the data buffer may cross
the page boundaries and if so, it needs to create
indirect data address words (IDAWs).

(4) The general CCW-translation handles general
channel programs in which their branches may
be very complex. For this reason, processing
their branches in the general CCW-translation
becomes complex.

4.2.2.3 Fast CCW-Translation for the V =Resident VM

The V=Resident VM has the resident level 2 memory
and has the following feature.

level 1 memory address

=level 2 memory address+

By this feature the CCW-translation is significantly
simplified and made fast as follows.

(1) As real memory address of the V=Resident

VM is continuous, VMCP need not check page
boundaries of a virtual channel program.
(2) Data address of a virtual CCW is translated
into real address only by adding the displacement.
Therefore, VMCP need not look up the address
translation table.

(3) VMCP need not create IDAWs even if data buffer
of a virtual CCW may cross page boundaries for
the same reason as (1).

Moreover, the following reduction methods are taken.

(4) Only simple channel programs in which their
branches are simple can be processed by Fast
CCW-translation. For example, the branch to
more than one channel program segment from a
single channel program segment is not permitted.
The translation of complex channel programs is
entrusted to the general CCW-translation. By
this restriction, the translation process for their
branches is made very simple and fast.

(5) Real CCW areas are acquired as free-lists at the
system initiation and are locally managed in the
Fast I/O simulation. This reduces the global

. memory management overhead.

This Fast CCW-translation logic is only applicable to
the V=Resident VMs or the V=R VM, and does not
require OSs to be modified. The relation between Fast
I/O simulator and Fast CCW-translator is shown in
Fig. 4.

This Fast CCW-translator was implemented and is
estimated to result in about 50 9, reduction in the CCW-

H. UMeNO, K. OHMACHI, A. HiNo and J. IMURA

translation overhead. This effect was confirmed by

measurements in which Fast CCW-translation was

temporarily invalidated.

4.2.2.4 Fast CCW-Translation by Handshaking with
OSs )

Start 1/O instructions issued by an OS in a VM give
VMCP nothing but the first CCW address and I/O
address which VMCP uses to translate virtual CCWs,
If an OS in a VM gives VMCP certain information on the
CCW-translation at issuing Start I/O, the CCW-transla-
tion process will become simpler and faster in the V=
Resident VM. This information contains the last CCW
address, and the number of words in IDAWs, etc. It is
estimated that this handshaking will cause approximately
67%, reduction in the CCW-translation overhead in the
V=Resident VM. However, because this method
requires OSs to be modified, this is not implemented at
present.

Letters (b), (d) in Fig. 3 show that the I/O simulation
time is estimated to be decreased to 1/2.1~1/3.2 for the
V=Resident VM. Almost the same effects are estimated
for the V=R VM.

5. Performance Improvement Measurement

The V=Resident VMs and the Fast I/O simulation
have been developed in the VMS on the HITAC M series
computers, and the performance has been measured
on the HITAC M180.

5.1 Tools for Performance Evaluation

The following tools are used that are built in the VMS.

(1) Software monitor: This monitors the number of
occurrences of events such as virtual privileged
instructions, interruptions, and so forth.

(2) Hardware monitor: This monitors the CPU
service time in the supervisor state or in the
problem state, the instruction counters, not in
Buffer counters, not in TLB (Translation Look
Aside Buffer) counters, channel busy time, and so
forth.

(3) Data analyzing program: this program sums up
the data of monitors and prints out the results.

5.2 Hit Ratio Definition

In order to represent the applicability of the Fast I/O
simulation hit ratios of it is defined as follows:

D
Hit ratio of Fast Start [/O= ol 100 (%)

C=the total number of virtual Start 1/O;
D=the number of virtual Start 1/O which are com-
pletely handled by the Fast Start I/O simulation.
Hit ratio of Fast I/O interruption is defined in the
same way. Average hit ratio of Fast I/O simulation is
defined as a simple average of the above-stated two
ratios.
Hit ratio of Fast CCW-translation is defined similarly:
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Table 2 Benchmark Jobs.

cp 1/0O frequency times/10°
Job Measurement : U steps of VM
No. Conditions Outlines Utilization (%) Remarks
non-Fast I/O | Fast I/O
1 | VOS2 Generation of 100,000 data 13.1) 149 152 |
2 | V=R VM with | Sorting that data 13.1 ¢*3 199 199 *1  Magnetic Tape
CCW-translation| transfer of 61 MB*? programs from -
3 Single VM MT*! to DISC 15.7 122 123 *2  Million Bytes
4 | Single Job Compiling 12 PL1 programs 62.8_ 10 10 *3  Under Single VM
5 3 + Under Real
5 3 446 18.1 117 102 * Machine
6 52 43.1 39 36
O the number of
7 Compile-Link-Go of Fortran 799 54.8 a4 15 14 | *5 of source program
prog coding steps
8 141 75.0 8 7
9 219 81.4 5 4
10 J 321 25.9 98 64
11 | EDOS-MSO Same as Job No. 1 6.2 413 424
V=Resident VM| Same as Job No. 2
12 Single VM 5.3 311 312
13 | Single Job Same as Job No. 3 4.9) 477 476

F
Hit ratio of Fast CCW-translation= ok 100 (%)

E=the total number of the Fast CCW-translation
requests;

F=the number of CCW-translation requests which
are completely handled by the Fast CCW-
translator.

These hit ratios are calculated from data of the

software monitor.

5.3 Benchmark Jobs and Independent Programs

Table 2 shows benchmark jobs. CPU utilization and
I/O frequency ranges from 4.9%, to 75.0%; and from 4
to 476 times/10® steps of VM respectively. In addition,
independent programs were developed and used to
measure the I/O simulation time. It contains only one
privileged instruction: Start I/O. The measurements has
confirmed the effect of the Fast I/O simulation illustrated
in Fig. 3.

5.4 Performance Improvement

Table 3 summarizes the effects of Fast I/O simulation
for the benchmark jobs in Table 2. Each item is discussed
here as follows.

(1) Hit Ratio of Fast I/O simulation

Fast 1/O simulation handles only the normal cases.
Therefore, if abnormal cases occur frequently, the hit
ratios will be decreased. At present, the occurrences of
unit check (some hardware errors in real devices) are

the main cause that reduces the hit ratios (Job No. 5
to No. 10 in Table 3). Unless the unit check occurs, the
hit ratios are close to 1009 (job No. 1 to No. 4, job No.
11 to No. 13 in Table 3).

(2) Reduction in supervisor state time

Figure 5 reveals that if the averrage hit ratio of Fast
I/O simulation =909 then, supervisor state time is
reduced by about 509, ~ 609 and the CPU overhead of
VMS is also reduced by about 409, ~ 509 (Fast I/O vs.
non-Fast 1/0).

(3) Reduction in Elapsed time expansion

Table 3 shows that Fast I/O simulation significantly
reduces the elapsed time expansion ratio.

(4) Mean Instruction Execution Time of VMCP

Table 3 shows that the Mean Instruction Execution
Time (MIET) of VMCP is increased a little by Fast I/O
simulation. This is because the number of short instruc-
tions (for example, those executed in one or two machine
cycles) becomes smaller by the significant elimination
of CPU steps of I/O simulation by Fast I/O logic.

On the other hand, the not in TLB ratio of VMCP
is decreased a little by Fast I/O simulation. In addition,
the not in Buffer ratio of VMCP is decreased also, when
the Average Hit Ratio of Fast I/O simulation >999 as
illustrated in Fig. 6. This means that the locality of pro-
gram modules in Fast I/O simulation is higher than that
in general I/O simulation.

(5) VMA'’s overhead

VMS’s overhead is calculated by its simulation time
for each privileged instruction. The time is calculated
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Table 3 Effects of the Fast I/O simulation.

H. UMeNo, K. OHMACHI, A. HiNo and J. IMURA

*O0VMA dr? S
Job *1Reduction | *2Reduction 7T x100(%) E, =73 <100 (%) Hit Ratio of
No in supervisor in VMS CPU
. statertime Overhead Are B*S A { B Fast Fast I/O Fast CCW
Start I/O Interrupt Translation
1 54.6% 40.2% 28.3 30.5 — — 99.9% 99.8% 100%
*9(99.9%)
2 55.1 39.4 34.8 37.5 — — 98.8 99.1 100
(990 )
3 60.0 37.2 52.2 55.6 —_ — 100 | 99.9 100
(1000 )
4 47.7 331 3.8 3.8 — — 99.0 95.0 100
(970 )
5 32.9 28.5 16.9 15.8 23.5 13.7 71.4 64.2 99.7
(708 )
6 41.2 34.1 11.2 9.6 22.5 10.0 88.2 83.5 99.5
(8.9 )
7 322 25.3 3.6 3.6 11.8 44 83.1 72.5 99.5
(718 )
8 37.5 30.6 1.5 1.5 7.4 2.1 84.5 74.7 99.4
(79.6 )
9 37.8 28.3 0.9 1.0 52 1.7 85.5 76.6 99.3
(811 )
10 49.6 45.8 16.4 11.7 20.7 6.9 85.4 76.7 99.4
(811 )
11 46.0 45.8 1.6 1.7 11.0 0.4 99.9 | 99.5 100
(99.7 ) A
12 47.8 47.0 1.7 1.7 3.8 0.3 99.4 I 99.4 100
(994 )
13 47.2 46.9 2.8 3.0 8.0 1.7 100 98.1 100
(991 )
@ 90K AVERAGEZ BIT RATLOZ 100 — ——— 99 < AVERAGE HIT RATIOS 100
ol U BIIS AVERAGE BIT RATIOCS 90 12
: —_— 70§lVilAG¥ HIT RaTIOL 80 —~ FAST 10
o 5:J08 M [N TABLE 2 =S i 2 x non-FAST L/O
= E x “  J08 Wo. N TABLE Z
E w 10, & 10 X
R M
N a K
H S asfe )
z t w :
: I o .
E L"_——% H as \/u
= 30 ®
n : as by
0 100 200 102 400 sco : "
1/0 FREQUBNCY (TIMES / IU‘ STBPS OF VM) B‘. 05
Fig. 5 Reduction in supervisor state time vs. I/O frequency. H '
Several intervals of average hit ratio for Fast I/O shown. a2
based on the trace of micro-program coding. This cal- 0 100 200 300 400 s00

culated time is used in Table 3, since it expresses the time
of standard process, and measured time may express
that of special process. Table 3 shows that the VMA’s
overhead (OVMA) over real CPU service time (7%)
will amount to 30%,~559% in the case of I/O bounded
jobs of VOS2 (Job No. 1~No. 3). This VMA’s over-
head changes depending on if Fast I/O simulation is
used or not, since the behaviour of an OS in a VM
also changes depending on that.

10 FREQUENCY (TIMES / 10* sTEPS OF VM)

Fig. 6 VMCP-not in buffer ratio (NIBR) vs. I/O frequency.
Effects of Fast I/O shown.

5.5 Memory Increase in Fast 1/O Simulation

Real memory is required for level 2 memory of the
V=R VM or V=Resident VMs. In addition, the follow-
ing memory increase is required for various I/O control
areas for Fast I/O simulation.

Figure 7 shows the memory increase in Fast I/O
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VMCP-MIET*¢ VMCP-NIBR*? VMCP-NITLBR*®
relative value relative value relative value
A B A B A B Remarks
1 1.187 1 0.834 1 0.798 *!  Fast I/O vs. non-Fast I/O
0.996 1.217 1.055 1.091 1.105 0.968 *2  Fast I/O vs. non-Fast I/O
0.957 1.135 0.942 0.816 0.871 0.468 *3  VMA overhead
1.024 1.202 1.116 1.123 0.976 0.742 *4 non-Fast I/O
1.045 1.094 0.711 0.926 1.006 0.855 *5  Fast I/O
1.083 1.143 0.899 0.982 1.036 0.897 *S  Mean Instruction Execution Time
1.070 1.120 0.837 0.974 1.017 0.861 *7  Not In Buffer Ratio
1.073 1.127 0.839 0.981 0.986 0.834 *%  Not In TLB (Translation Look aside Buffer) Ratio
1.072 1.117 0.832 0.912 0.959 0.788 *S  AVERAGE HIT RATIO
1.073 1.135 0.830 0.984 1.035 0.903
1.030 1.112 0.448 0.295 0.823 0.500
1.035 1.112 0.572 0.401 0.879 0.532
1.030 1.101 0.499 0.267 0.839 0.669

t00

OVER. RESIDENT VMCP NUCLRUS

RATE OF MEMORY INCREASE

N, = NUMBER OF VMs
N) = NUMBER OF LINES PER VM

Ny = 200,N,=2

Ny =100, 0 =2
Ny =50,8,=2

Ny =258, =1

20 40 49 a0 ieo
Nq = NUMBER OF MAGNBTIC DISXS OR TAPES PER VM

Fig. 7 MEMORY INCREASE in FAST I/O simulation.

120 140 140 180 200 220

simulation for the number of virtual devices of a VM.
It shows that Fast I/O simulation needs more memory
by about 209 than general I/O simulation logic, when
N;=50, N,=50, N,=2. Here:

N, =the number of discs or tapes per VM;

N, =the number of communication lines per VM ;

N,=the number of VMs initiated.

This is because various I/O control areas are acquired
at the system initiation in order to reduce CPU overhead
in Fast I/O simulation.

6. Conclusions

The V=Resident VMs have been introduced and
Fast I/O simulation method has been described. The
effect of Fast I/O simulation has been confirmed by
measurement. Fast 1/O simulation causes about 50%, ~
60% reduction in total supervisor state time of VMS
and significantly reduces elapsed time expansion for the
V=Resident VM and for the V=R VM.

Memory increment in Fast I/O simulation is about
20%, for the 200 devices for users in the system.

This performance improvement supports more than
one high performance VM (i.e. the V=R VM and the
V =Resident VMs), and these VMs are now being used
for gradual system transition for several on-line systems.
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