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Data dependencies play an essential role in database design. They provide not only integrity constraints but
also structural information about data. Among them, multivalued dependencies, as well as functional de-
pendencies, are fundamental. However, the semantic aspects of multivalued dependencies have not been
sufficiently investigated. This paper examines multivalued dependencies from the semantic point of view and
clarifies the following: (1) The difference between Boyce-Codd normal form and fourth normal form is clarified.
(2) It is shown that the real transitivity condition for multivalued dependencies does not hold in a natural
sense. (3) It is also shown that a rule which is a mixture of functional and multivalued dependencies has the

same problem as the transitivity rule.

1. Introduction

In the design and analysis of relational databases, data
dependencies and database normalization theory have
been recognized as central ever since Codd introduced
functional dependeucies and applied them to the normal-
ization of relations [6, 7). Based on the concept of func-
tional dependencies, Codd defined three normal forms
for relations to eliminate undesirable behavior in data
manipulation.

Functional dependencies are a kind of relationships
between data elements (i.e., attributes) or sets of data
elements. A functional dependency X—Y, where X and
Y are sets of attributes, hold whenever the relationship
between X and Y is one-to-one or many-to-one. In other
words, functional dependencies can completely represent
one-to-one and many-to-one relationships between
attributes. This completeness and the close correspon-
dence to the single-valued function y=f(x) have made
functional dependencies easy to understand.

As suggested by Schmid and Swenson [19], there may
be other kinds of relationships which are not functional.
Fagin [10] and, independently, Zaniolo [20] have pre-
sented a new type of dependencies called, multivalued
dependencies. (Delobel has also presented a similar idea
which he called hierarchical dependencies [9].) Based on
multivalued dependencies, Fagin defined fourth normal
form.

Recently, more work has been done on multivalued
dependencies [3, 11, 12, 13, 14, 15, 17). It seems that
those efforts have been dealing more and more syntactic
aspects of multivalued dependencies, and the semantic
considerations have not been sufficiently examined (an
exception is [12]).
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The purpose of this paper is to discuss the semantic
aspects of multivalued dependencies, to clarify the char-
acteristics of relations which include multivalued de-
pendencies, and to review some known results on mul-
tivalued dependencies. The motivation of our work is as
follows:

1. Multivalued dependencies, as well as functional de-
pendencies, have an important role in the database
theory, since both of them relate to the fundamental
properties of relationships between data. Basic types
of relationships between X and Y, where X and Y
are sets of attributes, are as follows:

(1) One-to-one correspondence.

(2) Many-to-one correspondence.
(3) One-to-many correspondence.
(4) Many-to-many correspondence.

The functional dependency X—Y holds for any X and
Y which belong to type (1) or type (2). Multivalued de-
pendency can represent some of type (3) and type (4),
which can not be represented by functional dependencies.
However, multivalued dependencies can not cover all
the relationships which belong to type (3) or type (4).
This makes multivalued dependencies more difficult to
understand and treat than functional dependencies.

2. As mentioned before, semantic aspects of multi-
valued dependencies have not been sufficiently in-
vestigated. It should be noticed, however, that
semantic considerations are essential for better
understanding of data and for fruitful contribution
to the problems of data base design and manipula-
tion.

3. The data dependency theory is in the midst of de-
velopment, and an effort should be made on building
a better representation of data dependencies. The
first step to accomplish this should be clarifying the
powers and limits of functional and multivalued
dependencies. Compared with functional depen-
dencies, the properties of multivalued dependencies
have not been well examined.
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Table 1 A Relation in BCNF but not in 4NF.

Employee Child Year Salary
1 Hans 70 10,000
1 Dick 70 10,000
1 Hans 72 12,000
1 Dick 72 12,000
1 Hans 73 15,000
1 Dick 73 15,000
2 Eva 70 20,000

The main topics discussed later are: (1) the difference
between Boyce-Codd normal form and fourth normal
form and (2) transitivity of multivalued dependencies.
Let us examine the relation R (EMPLOYEE, CHILD,
YEAR, SALARY) in Table 1 (which is introduced in
[19] and cited by [10]). R is in Boyce-Codd normal form
but not in fourth normal form. (The combination of
YEAR and SALARY makes up salary history for em-
ployees.) The database designer may ask the following
fundamental questions: What does R represent? Is it
possible to add non-key attributes to R in order to ex-
plain R in more detail? In a later section, we shall de-
monstrate that, in a natural sense, it is only all-key
relations that are in Boyce-Codd normal form but not
in fourth normal form.

The transitivity rule in multivalued dependencies states
that if X—»—Y and Y- —Z hold, then X—»—>Z also
holds. However, there is a problem about the condition
X—-Y and Y- —Z. Semantically, the multivaiued
dependency X——Y in R(X, Y, Z) means the following
(see Section 2):

(1) Each value of X determines a set of values of Y.

(2) Y and Z are conditionally independent.

Y- —-Z in R gives the following:

(3) Each value of Y determines a set of values of Z.

(4) X and Z are conditionally independent.

There is a semantic contradiction between (2) and (3).
We shall show that the real transitivity condition for
multivalues dependencies (i.e., X—>—>Y and Y——7Z)
never holds in a usual sense. On the other hand, we know
that transitivity is often applied to prove other inference

rules. However, such transitivity does not exist originally

but is derived by augmentation. When two given mul-
tivalued dependencies originally do not meet transitivity,
the following are shown:

(a) Itis always possible by augmentation to obtain a
transitivity condition from the given multivalued
dependencies.

(b) The results obtained by such transitivity are
derivable without using transitivity.

We also discuss an inference rule which is a mixture of
functional and multivalued dependencies. It was pre-
sented in [4] and appears in Section 2 as the FD-MVD2
rule. We show a close resemblance between transitivity
and FD-MVD2, and that the assumption of FD-MVD2
is not semantically acceptable either.

The paper is organized into four sections. Section 2

reviews the concepts and formal notations of functional
dependencies and multivalued dependencies. Section 3
discusses the problem of applying the transitivity rule for
multivalued dependencies. It also identifies what type of
relations are in Boyce-Codd normal form but not in
fourth normal form. Section 4 contains the conclusions
of the paper.

2. Basic Concepts

In this section we briefly review and define the rela-
tional terminology. More detailed discussions are made
elsewhere [2, 3, 4, 7, 8, 10, 20].

2.1 Relations

An attribute is a symbol taken from a finite set U=
{A{, A,,- -, A,}. For each attribute there is a set of
possible values called its domain, denoted by DOM(A).
One domain can be associated with more than one at-
tribute. We will use capital letters from the beginning of
the alphabet (A, B, - -) for single attributes, and capital
letters from the end of the alphabet (X, Y,- ) for sets
of attributes. For a set of attributes X, let x denote the
values assigned to these attributes from their respective
domains. The notation XY will be used to represent the
union of two arbitrary sets of attributes.

A relation on the set of attributes U={A, A,, - -,
A.,} is a subset of the Cartesian product DOM(A ;) x - -+
x DOM(A,). The elements (rows) of R are called tuples.
A relation R on {A,,--+,A,} will be denoted by
R(A,, -, A,). Similarly, if R is defined on the union of
sets X,,- - -, X, then the notation R(X;, " - -, X,,) will be
used. The word relation scheme denotes the structure
(description) of the relation. A relation is time-varing
because of the insertion, deletion and modification of
tuples, while the relation scheme is not unless the struc-
ture itself is changed. Data dependencies are specified on
relational schemes. When we say that a data dependency
holds for a relation scheme, we mean that every relation
which is an iustance of the scheme obeys that dependency.
Thus we will use the word “relation” instead of “rela-
tion scheme” hereafter when there is no confusion.

Let u be a tuple in R(U). If Y is a subset of U, then
u[Y] is the tuple which contains the components of u
corresponding to the elements of Y. The projection of
R on Y, denoted by R[Y], is defined by

R[Y]={u[Y] [ueR}.
Similarly the conditional projection of R on Y by a value
x for attribute X, where X < U, is defined as follows:
R[x, Y]={u[Y] |ueR and u[X]=x}.
Let R(X, Y) and S(Y, Z) be relations where X, Y and Z
are disjoint sets of attributes. The natural join of R and S,
denoted by R*S, is the relation T(X, Y, Z) whose attrib-
utes are XYZ, and is defined by:
T(X, Y, Z)=R(X, Y)*S(Y, Z)
={(x, ¥, 2) |(x, y)eR and (y, 2)eS}
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Let R(U) be a relation and let X be a subset of U. We
say that X is a superkey of R if every attribute in R
functionally depends on X. If X is a superkey and no
proper subset of X is a superkey, X is a key of R. We
say that R is an all-key relation if the key X is equal to U.

2.2 Data Dependencies and Normal Forms

Data dependencies provide two kinds of information:
integrity constraints and structural information of data.

Functional dependency (FD) is a statement f: X->Y
where X and Y are sets of attributes. When we say that
the FD f holds for a relation R(X, Y, --), every two
tuples of R that have the same X-value also have the
same Y-value. When f holds, we say that Y is function-
ally dependent on X or that X functionally determines Y,
and we usually write X—Y for simplicity.

Let X and Y be subsets of U, where U is the set of
attributes of a relation R(U). And let Z=U-XY. We
say that there is a multivalued dependency (MVD) from
X to Y in R(U), denoced by g: X—-—Y, if and only if
(ff) for every XZ-value xz in R(U),

R[xz, Y]=R[x, Y].

When g holds, we say that X multidetermines Y. Infor-
mally speaking, Y and Z are independent under X. When
XNY # ¢, X—>—>Y holds for Rif X->—->Y—-X. Thisisa
direct consequence of the definition. By X——-Y,|Y,| -
|Y,, we mean that X——Y; holds for each set Y; (i=
1,2,- -, n).

From the definitions, an FD X—Y is defined by the
sets of attributes X and Y alone and independent of other
attributes in the relation. On the other hand, the validity
of an MVD X—-Y in R(X, Y, Z) depends on the ex-
istence of Z and thus cannot be determined by X and Y
alone. It is possible that X— —Y is not valid in R(X, Y,
Z)butisvalidin R(X, Y, Z'), where Z' = Z. Thus, MVD’s
cannot represent all one-to-many and many-to-many
relationships, and they are context sensitive. This context
sensitivity makes it difficult to specify proper MVD’s
especially when there are many attributes in a relation.

An FD X—Y is said to be trivial if Y& X. A trivial
MVD X--Y in R(X, Y, Z) is defined when Y& X or
Z=¢. An FD X-Y and an MVD X——Y are called
full if for any proper subset X’ of X, X'++Y and X' —»+Y
respectively. Y and Z are said to be conditionally indepen-
dent to each other under X if X—»—-Y and X->->Z
(shortly X—»-Y|Z) hold in RX,Y,Z). If X=¢
(namely ¢——Y|Z), then they are called completely
independent.

A nontrivial MVD X— Y is called strong unless it is
an FD. In the discussion of the semantics of MVD’s in
Section 3, we are concerned with only strong MVD’s.

As a complete set of inference rules for FD’s, Arm-
strong [2] presented the following rules:

FDI (reflexivity): If Y& X then X-Y.

FD2 (augmentation): If Z<W and X—Y then

XW-YZ.
FD3 (transitivity): If X—Y and Y—Z then X->Z.
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Redundant rules:
FD4 (pseudo-transitivity): If X-Y and YW-Z
then XW-Z,
FDS5 (union): If X—Y and X—>Z then X—YZ.
FD6 (decomposition): If X—YZ then X—>Y and
X->Z.
Beeri et al. [4] axiomatized both FD’s and MVD’s and
presented the following inference rules:

MVDO (complementation): If XYZ=U and Yn

Z<X, then X->-Y iff
X-o-Z.
MVDI (reflexivity): If YSX then X—-Y.
MVD2 (augmentation): If Z&W and X-——Y then
XW--oYZ.
MVD3 (transitivity): If X—»—>Y and Y——Z then
 X-ooZ-Y.
Redundant rules:

MVD4 (pseudo-transitivity): If X—--Y and

YW--Z then
XWo-oZ-YW.
MVDS5 (union): If X-»-Y and X——Z then X—>—

YZ.
MVD6 (decomposition): If X—-—-Y and X->-Z
then X->-5YnZ, X->-
Y—-Zand X-»>->Z-Y.

FD-MVD rules:

FD-MVD1: If X-Y then X—-Y.

FD-MVD2: If X»—>Zand Y-Z', where Z'’<Z and

Y and Z are disjoint, then X—2Z'.

We will discuss in Section 3 the problems in MVD3,
MVD4 and FD-MVD2.

A relation scheme R is in Boyce-Codd normal form
(BCNF) if, whenever a nontrivial FD: X—Y holds for
R, then so does the FD: X— A for every attribute A of
R [8]. In other words, X is a superkey of R. BCNF is a
stronger version of third normal form (3NF) [7]. A rela-
tion R is in fourth normal form (4NF) if, whenever a
nontrivial MVD X——Y holds for R, then so does the
FD XA for every attribute A of R [10]. 4NF is stronger
than BCNF. If R is in 4NF, then it is in BCNF.

3. Semantic Considerations on Multivalued Dependencies

3.1 Difference between 4NF and BCNF

In this section we discuss the difference between 4NF
and BCNF. What kind of BCNF relations are not in
4NF? In order to examine this, let us go back to Table 1.
The relation R(EMPLOYEE, CHILD, YEAR,
SALARY) is in BCNF but not in 4NF. The strong
MVD: EMPLOYEE—-—CHILD|{YEAR, SALARY}
holds for R. Apparently, R is an all-key relation.

Assume that the strong MVD: X— —Y|Z holds for
the BCNF relation R(X, Y, Z). It is obvious that X is
not a key for R since X does not uniquely determine Y
and Z. By the definition of MVD, if (x,y,,z,) and
(X, ¥,, Z,) are the tuples of R, then so are (x, y,, z,) and
(X, Y;, z;). Therefore, XY and XZ cannot be a key,
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either. Then, the question is: is it only all-key relations
that satisfy the condition of BCNF and non-4NF?
From the semantic point of view, we believe the answer
is yes. Syntactically, however, there is an exception. We
clarify it by the following lemma:
Lemma 1: Assume that the nontrivial MVD X, X, - —
Y|Z holds for R(X,, X,, Y, Z), where X,, X,, Y,and Z
are disjoint. Also assume X;+sX,. Then the FD X,YZ—
X, holds iff the following condition is satisfied:
For every two X, X, —values x,x, and x;x} (X, #x3),
Y, nY,=¢ or Z,nZ,=¢, where Y, =R[x,X,, Y],
Z,=R[x,x,, Z}], Y,=R[x,x5, Y] and Z,=R[x,x;, Z].
Proof: (1) (if-part) Let S, ={x;} xY; xZ, and S, ={x,}
xY,xZ,. Then S; =R[x;X;, X;, Y, Z] and S, =R[x,x5,
X1, Y, Z] because X,X,——>Y|Z holds for R. By the
assumption, Y, nY,=¢ or Z,nZ,=¢. Hence, S;NS, =
¢. This implies that no X,YZ-value is associated with
more than one X,-value, which is equivalent to X, YZ—
X,.
(2) (only-if-part) Assume Y,nY,#¢ and Z,NnZ,#¢;
we derive a contradiction. Let yeY,nY, and zeZ,nZ,.
Then both (xy, x5, y, z) and (x,, X3, y, Z) are tuples of R
because X,X,——Y|Z. This implies that X,YZ-X,
does not hold. This is a contradiction. []
We introduce the following theorem:
Theorem 1: If a relation R is in BCNF but not in 4NF,
then R is an all-key relation except the condition of
Lemma 1.
Proof: Let R(X,Y, Z) be in BCNF but not in 4NF,
where X, Y and Z are disjoint. Assume that the strong
MVD X——Y|Z holds for R. Let K be a key of R.
There are three cases to be considered.
(IDCasel: AssumeK=2Y.LetY=Y,Y,suchthatK=
Y, and KnY,=¢ (Y, #¢). By the definition of MVD’s,

R[x, Y, Z}=R[x, Y] x R[x, Z]. )]

Let R[x, Y}=Y, and R[x, Z})=Z,. If y,y, and y,y5
(y2 #Y3) are elements of Y, then both (x, y,¥,, z) and
(X, y1Y3, z) are tuples of R by eq. (1), where z e Z,. This
violates the FD XY,Z—-Y, because there are two Y,
values, y, and yj;, for the same XY,Z-value xy,z.
XY ,Z—-Y, is derived by K- Y,and K =XY,Z.) Hence,
if y,¥,€Y, then y,y5¢Y,. This implies XY, —Y,. XY+
Z is obvious by eq. (1). (E.g. if R[x, Z}={z,, z,} and
¥1Y2€R[x, Y], then (x, ¥,¥2, 2,)€R and (x, y1¥2, z2)eR.)
This contradicts the assumption that R is in BCNF.
Hence we get K2Y.

(2) Case 2: Assume KD Z. As Y and Z are symmetric
in R, we can directly conclude K=2Z from the above
discussion by exchanging Y and Z.

(3)Case 3: Assume KX, Let X=X,X, suchthat K=
X; and KnX,=¢ (X,#¢). Let R[x;x,, Y]=Y,, R[x;x,,
Z)=Z,, R[xx3, Y]=Y, and R[x,x}, Z]=Z,, where x,X,
and x,x3€X;X, and x,#x5. Since the condition of
Lemma 1 is excluded, there may be two X,X,-values,
X¢X, and x,X5, such that Y,nY,#¢ and Z,nZ,+#¢.
This implies X, YZ+X, and we obtain K=X.

From (1), (2) and (3), we get K2XYZ. Since K<
XYZ, the desired result K=XYZ is obtained. [

Before discussing the result of Theorem 1, we have to
examine the possibility that the condition of Lemma 1
takes place. If such a condition is a usual one, Theorem 1
becomes meaningless. Semantically, the constraint that
Y, nY,=¢ or Z,nZ,=¢ is strange and does not seem
to be controllable in an actual environment because the
FD: X,YZ-X, produces more problems than it solves.
If we decompose R into two 4NF relations, R{(X,, X,,
Y) and R,(X,, X,, Z), it becomes extremely difficult to
preserve the constraint X, YZ—X,. Each time R, or R,
is updated (inserted, deleted, or replaced), it must be
confirmed that the constraint Y,nY,=¢ or Z,nZ,=¢
is satisfied for appropriate X, X,-values or that X,YZ is
unique by joining R, and R,. (According to [18], R, and
R, are not “independent”.) Of course, other problems
may occur unless we decompose R [10, 19, 20]. Zaniolo
and Melkanoff [21] have presented an example which
belongs to Lemma 1. WS (DAY, TIME, GROUP) is
the weekly schedule of occupancy of a conference room.
There are two constraints on WS,

(1) Only one group meets at any given day and time

in the room.

(2) A group must follow the same time schedule for

any day when it uses the room.

The first constraint implies {DAY, TIME}->GROUP
and the second gives GROUP——-DAY|TIME. This is
the case where X, =¢ in Lemma 1. The second con-
straint, however, is unnatural and does not seem to be
the case in the real world. Even if it were the case, the
decomposition into WS1 (DAY, GROUP) and WS2
(TIME, GROUP) causes the difficult problems men-
tioned above.

From our experience, it is unlikely to have relations
which satisfy the condition of Lemma 1 unless unnatural
assumptions like the relation WS are made. Further-
more, even if there exist such relations that satisfy the
condition of Lemma 1, they never increase the usefulness
of 4NF because the decomposition into 4NF relations
creates difficulties while it solves other problems as
mentioned above. (In the example of WS, the decomposi-
tion should not be made because assumption (1) is
essential.) Therefore, we exclude the case of Lemma 1 in
the discussion of Theorem 1.

Theorem | tells us that the relations which are in
BCNF but not in 4NF are only all-key relations. The
main usage of all-key relations is to represent relation-
ships between other relations. For example, R(EEMP#,
PROJ#) represents the relationship between “Em-
ployee” and “Project” relations. Similarly, S(PROJ#,
PART#, SUPP#) represents the relationship among
“Project,” “‘Part” and “Supplier” relations. Those are
all-key relations, but they are in 4NF. There is a sig-
nificant difference, however, between R (or S) and BCNF
but non-4NF relations. The semantics of R is clear and
we can add non-key attributes to R if necessary (e.g.,
PERCENT-OF-TIME and START-DATE).
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3.2 Problems of Transitivity

The inference rules for MVD’s are analogous to those
for FD’s. There is a significant difference, however, be-
tween FD’s and MVD’s. MVD’s are sensitive to context
while FD’s are not. This sensitivity produces problems
in the transitivity rule (MVD3) for MVD’s.

If both X—Y and Y—Z are valid in a relation, X-Y,
Y —Z and, transitively, X—Z always hold for any rela-
tion whose attributes include X, Y, and Z. For example,
if EMP—DEPT and DEPT->MANAGER are valid in
S(EMP, DEPT, AGE) and T(DEPT, MANAGER,
BUDGET) respectively, these FD’s and, transitively,
EMP-MANAGER are valid in R(EMP, DEPT,
MANAGER) and in any other relation which includes
EMP, DEPT and MANAGER.

However, the same arguments can not be made for
MVD’s. Let’s assume the existence of the MVD:
PROJ-»—EMP in S(PROJ, EMP, PART) and the
MVD: EMP—-—CHILD in T(EMP, CHILD, PROD).
Then someone may ask; does PROJ— - CHILD (also
PROJ— —-EMP) hold in R(PROJ, EMP, CHILD)? As
will be demonstrated later, the answer is no. (On the
other hand, EMP— —PROJ ICHILD holds for R.) This
example suggests that the transitivity condition X—»—-Y
and Y->—-Z in R(X, Y, Z) will not hold. As mentioned
in Section 1, X— —Y semantically tells us the following:

(1) Each value of X determines a set of values of Y.

(2) Y and Z are conditionally independent.

Y——Z gives the following:

(3) Each value of Y determines a set of values of Z.

(4) X and Z are conditionally independent.

There is a semantic contradiction between (2) and (3).

Therefore, we have the following theorem: (Note that
unless X—>—-Y and Y—>—Z are valid in S[X,Y, Z]
which is the projection of S(X, Y, Z, W), they are not
valid in S, either [10]. Therefore, we discuss the relations
which include only X, Y and Z.)
Theorem 2: Let R(X,Y, Z), S(X,Y, V), and T(Y, Z,
W) be the projections of U(X, Y, Z, V, W), where X, Y,
Z, V, and W are disjoint. Assume the following:

(1) X-—-Y holds for S and Y- —Z holds for T,

where X——Y and Y— —Z are strong MVD’s.

(2) In U, Y determines Z-values independently of

X (i.e. there can be y, and y, which satisfy

U[x’ Y1, Z]# U[X, Y2 Z])
Then X——Y does not hold for R.
Proof: Suppose that X—+—Y holds in R, and we
proceed to derive a contradition. Let Sfx, Y]=Y,.
Let Tly,, Z}=Z, and Ty,, Z]=Z,, where y, and y,€Y,.
It is possible to choose y, and y, such that Z, —Z, # ¢
because a different Y-value can determine a different set
of Z-values independently of X. Let z,&(Z, — Z,) and z,€
Z,. Then (x, y,, z,) and (X, y,, 2,) are tuples in R. Since
X——Y, the tuples (x, yy, 2;) and (X, y,, z,) must also
be in R. Therefore, R[y,, Z] includes z; which is not an
element of Z,. Hence, R[Y, Z]#T[Y, Z]. This contradicts
the fact that both R and T are the projections of U. [J
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What about Y- —Z in R? Contrary to X—--Y,
Y- —Z holds in R as long as X and Z are independent.
Such cases are common. As was shown in the previous
example, EMP——PROJ|CHILD holds for R(PROJ,
EMP, CHILD). However, if we select PROD from
T(EMP, CHILD, PROD) instead of CHILD, then
EMP->—>PROJ|PROD does not hold for R'(PROIJ,
EMP, PROD) because PROJ and PROD are not in-
dependent. (No MVD’s hold for R’; except trivial ones.)

The following are examples of Theorem 2:

(1) R(PROJ, PART, SUPP), S(PROJ, PART, EMP),
and T(PART, SUPP, SUBPART).

(2) R(TEACHER, STUDENT, HOBBY),
S(TEACHER, STUDENT, PHONE), and
T(STUDENT, HOBBY, FRIEND).

(3) R(LIB, BOOK, AUTHOR), S(LIB, BOOK,
LIBRARIAN), and T(BOOK, AUTHOR, KEY-
WORD).

(4) R(MAKER, DEALER, CAR), S(MAKER,
DEALER, BANK), and T(DEALER, CAR,
WORKER).

(5) R(STATE, CITY, PARK), S(STATE, CITY,
HIST-OF-GOVERNOR), and T(CITY, PARK,
MUSEUM).

Assumption (2) of Theorem 2 is so natural that we
could not find counter examples to the assumption.
(Of course, if —»—X|Y|Z holds for R(X,Y, Z), all
of the following MVD’s hold: X—--Y|Z, Y->-Z|X
and Z——X]|Y. However, such a relation is neither a
common nor a useful one.) Therefore, we examine
transitivity from another viewpoint. Namely, we clarify
the condition in which transitivity holds.

Theorem 3: Let R(X, Y, Z) be a relation, where X, Y,
and Z are disjoint. X—»—Y and Y——Z hold for R iff,
for every XY-value xy in R,

R[x, Z]=RIx, y, Z]=Rly, Z]. @

Proof: (1) (if-part) By the definition of MVD, X—»—>Z
is obtained from R[x, Z]=R[x, y, Z]. By complementa-
tion, X——-Y is obtained. We obtain Y->—>Z from
R[x, y, Z]=R[y, Z].
(2) (only-if-part) Since X——Y is equivalent to X—»—Z
in R, eq. (2) is directly derived by X—»—Y and Y—»—>Z.
O

We obtain the following two corollaries from Theorem
3.
Corollary 1: Let R(X, Y, Z, W) be a relation, where
X, Y, Z, and W are disjoint. If X—»->Y and Y—»->Z
hold for R, then R must satisfy the following:

(1) Every Y-value y in R[x, Y] determines the same

set of Z-values as R[x, Z].
(2) Every X-value x in Ry, X] determines the same
set of Z-values as R[y, Z].

Proof: Statement (1) is equivalent to R[y, Z]=RI[x, Z],
where yeR[x, Y]. Statement (2) is equivalent to R[x, Z]=
R[y, Z), where xeR[y, X]. Since X—»—-Y and Y->—-Z
still hold for R[X, Y, Z), the proof is direct from Theo-
rem 3. [J
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The following is presented by Kambayashi et al. [12].
Corollary 2: Let R(X,Y,Z, W) be a relation, where
X, Y, Zand W are disjoint. If X—+—Y and Y- —Z hold
for R, then R must satisfy the following:

(1) If R[x, YInR[x', Y]# ¢, where x#x’, then R[x,

Z)=R[x’, Z).
(2) If Rly, X]nR[y’, X]# ¢, where y#y’, then R[y,
Z]=R[y', Z).
Proof: Since X——Y and Y- —Z hold for R[X, Y, Z],
the proof can be directly made by eq. (2) as follows:
(I R[x, Z]=R[x, y, Z]=R[y, Z]=R[x, y, Z]=
Rix’, Z] where, yeR[x, Y]nR[x', Y].
(D Ry, Z]=RI, y, Z]=R[x, Z]=R[x, y, Z]=
Rly’, Z] where, xeR[y, X]nR[y’, X]. O

The results of Corollary 1 and Corollary 2 can not be
semantically accepted and do not seem to occur in the
real world. Therefore, we may say that assumption (2) of
Theorem 2 restricts virtually nothing on the attributes X,
Y and Z, and that transitivity condition (X——Y and
Y ——Z) never occurs in a natural sense. In addition,
the transitivity rule is misleading. The database designer
might specify the wrong MVD: X--Y in R(X, Y, Z)
when X——-Y and Y- —Z hold in S(X, Y, V) and T(Y,
Z, W) respectively.

Such an example is shown in Figure 1. PROJ—»—
EMP does not hold for R(PROJ, EMP, CHILD), while
EMP- —»CHILD holds, even if PROJ—»>—-EMP and
EMP—- > CHILD hold in S(PROJ, EMP, PART) and
T(EMP, CHILD, PROD) respectively. If the database
designer mistakenly specifies PROJ—»—EMP in R in
addition to EMP— —CHILD, undesirable tuples de-
picted in Figure | appear. In Figure 1, the correct data is
depicted in a hierarchical structure. Figure 1-(a) shows
the relation R when the tuple (P2, E1, Cl) does not exist,
and Figure 1-(b) represents R after the tuple was in-
serted. As shown in Figure 1-(2), there are three un-
allowable tuples caused by Corollary 1-(1) or Corollary
2-(2). In addition, eleven unallowable tuples have ap-
peared in Figure 1-(b) by the addition of (P2, El, Cl),

R(PROJ, EMP, CHILD) ; PROJ-+EMP, EMP-sCHILD
{incorrect)

Original Data

PROJ W | CHILD
Ll 4]

Fig. 1 Anomalies caused by incorrect transitive MVD’s.

which is the result of Corollary 1-(2) or Corollary
2-(1).

On the other hand, we have to refer to the fact that
transitivity is often applied especially when other in-
ference rules are proved. For example, the union rule
(MVDY5) is derived as follows: Assume X——Y and
X—-—=Zin R(X,Y, Z, W), where X, Y, Z, and W are
disjoint.

(1) X--Y; given

2) X->-2Z; given

3) X--XY; (1), MVD2

@4 XY--YZ;(2), MVD2

(5) XY-->W; @), MVDO

6) X->-W; (3), (5, MVD3

(N X--YZ; (6), MVDO
We have to distinguish the above case, however, from
Theorem 2. In the above example, originally there was no
transitivity condition in R. We will show that we can
always obtain a transitivity condition when two MVD’s
are given, and that the results obtained by such transi-
tivity can be derived by other rules.

Lemma 2: Given two MVD’s. It is always possible to
create a transitivity condition by MVD2.

Proof: Let R(U) be a relation. Assume that X—-Y
and Z——V hold for R(U), where XYZV < U. It is gen-
eral enough to prove that we can derive a transitivity
condition in R(X,Y,Z,V, W), where W=U-XYZV.
We augment X——Y by Z to obtain XZ—»—-YZ. Aug-
menting Z——-V by Y, we obtain YZ— -YV. Thus we
have the transitivity condition: XZ——-YZ and YZ— —
YV. O

Lemma 3: Assume that X—»—>Y and Z——V hold for
R(X,Y,Z,V, W), where XnY=¢, ZnV=¢ and Wn
XYZV=¢. Neither X—>—Y and Z— -V nor any pro-
jection of them meets MVD3 and MVD4 iff YNZV=¢
and VnXY =4¢.

Proof: Since the if-part is obvious, we prove the
only-if-part. Assume YNZV#¢ or VAXY #¢. There
are three cases to be examined:

(1) Assume YNnZ#¢. Let AcYNZ, Y=Y—A and
Z2'=Z7Z—A. Then X——A holds for R[X, A, Z', V, W].
Since Z— -V is equivalent to AZ'—»—V, we obtain
X—->—A and AZ'->—V which meet MVD4. Hence,
YNZ must be null.

(2) Assume VnX#¢. This follows (1). Hence, VnX
must be null.

(3) AssumeYNV#¢. Let AcYNV. ThenX——>A and
Z——A hold for R[X, A, Z}, which meets MVD?3 since
X—-—A implies X—»—Z in R[X, A, Z]. Hence, YNV
must be null. [J

Theorem 4: Given two MVD’s. Assume that those
MVD’s and any projection of them do not meet MVD3
and MVD4. Then the results obtained by any transi-
tivity which is created from Lemma 2 can be derived by
MVDO, MVD2 and MVD5.

Proof: Let X—»—Y and Z—»—V be MVD’s in R(X,
Y,Z,V,W), where XnY=¢, ZnV=¢ and Wn
XYZV =¢. By Lemma 3, we obtain YNXZVW =¢ and
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VAXYZW=¢. For the proof of Theorem 4, it is suffi-
cient to show that any result obtained by transitivities
which are created through Lemma 2 is also derivable by
MVDO0, MVD2 and MVDS5. Starting from X——Y and
Z— -V, we obtain the following transitivities:

(1) X->-Y; given

(2) Z--V; given

(3) XZ--YZ; (1), MVD2

4 YZ--YV; (), MVD2

(5) XZ--XV; (2), MVD2

(6) XV--YV; (1), MVD2
(3) and (4) are minimum augmentation which produces
a transitivity. (5) and (6) are another minimum augmen-
tation, and there is no other minimum augmentation.
From (3) and (4), we obtain the following results:

*7) XZ--V;(3), (@), MVD3, VAXYZ=¢
®) YZ-—-XW; (4), MVDO
9) XZ->-XW-Z; (3), (8), MVD3

*(10) XZ-->W; (9), WnXZ=4¢, definition
(5) and (6) give the following:

*11) XZ--Y; (5), (6), MVD3, YNnXZV=¢

(12) XV--ZW; (6), MVDO

(13) XZ->->ZW-2Z; (5), (12), MVD3

(14) XZ-—W; (13), WAXZ=¢, definition
Operations (8)~(9)—(10) are reversible. Operations (12)-
(13)-(14) are also reversible. Since (10) and (14) are
identical, we must prove that we can derive (7), (10) and
(11) (marked with *’s) without transitivity. The proof is
as follows:

(15 XZ--Y; (1), MVD2

(16) XZ--V; (2), MVD2

(17) XZ--YV; (15), (16), MVDS5

(18) XZ—->W; (17), MVDO, YVAW=¢
(15), (16), and (18) give the results.

Redundant augmentation gives the only possibility to
obtain other transitivities from (1) and (2). Let Q be an
arbitrary set of attributes in R. Then redundant augmen-
tation gives the following transitivities:

(19) XZQ-—-YZQ; (1), MVD2

200 YZQ-—-YVQ; (2), MVD2

(1) XZQ-—-XVQ; (2), MVD2

(22) XVQ--YVQ; (1), MVD2
It is enough to prove that the results obtained by (19)
and (20) can be derived without transitivity since similar
arguments can be made on (21) and (22).

*(23) XZQ--V—Q; (19), (20), MVD3, VAXYZ=

¢

(249) YZQ--XW; (20), MVDO
25 XZQ--XW-ZQ; (19), (24), MVD3

*(26) XZQ->->W-Q; (25, WnXZ=¢
The derivation of (23) and (26) is direct from (16) and
(18) by MVD2 and the definition of MVD. []

We have shown by Theorem 2 and Theorem 3 that
the transitivity condition never occurs in a natural sense.
We have also shown that it is always possible by aug-
mentation to obtain the transitivity condition when two
MVD’s are given which originally do not meet transi-
tivity and pseudo-transitivity, and that the results

F. NAkAMURA and P. P. CHEN

obtained by such transitivity are derivable without transi-
tivity. Therefore, the transitivity rule becomes meaning-
less in an actual environment. The same arguments can
be made on pseudo-transitivity (MVD4) because it is
one variation of transitivity.

Now we discuss FD-MVD2. It may appear that there
is no close resemblance between transitivity and FD-
MVD2. Actually, we can make almost the same argu-
ments about FD-MVD?2 as those for transitivity. For
convenience, we assume that Z'=Z and X, Y, and Z are
all the attributes in the relation R, where X, Y, and Z
are disjoint. (Such condition is always obtainable by
projection.) Then, FD-MVD2 can be written as follows:

FD-MVD2': If X»—Z and Y—>Z then X—Z.
Since X—»—Z is equivalent to X——-Y in R(X, Y, Z),
the following is obtained:

FD-MVD2": If X—»-Y and Y—Z then X-Z.
Note the resemblance between transitivity and FD-
MVD2". The problem of FD-MVD?2" is even clearer
because X——Y and Y—Z give the following:

(1) Y and Z are conditionally independent.

(2) Y functionally determines Z. (Every Y-value

uniquely determines a Z-value.)

It goes without saying that there is a serious contradic-~

tion between statements (1) and (2). Similarly to transi-
tivity, the following theorem holds:
Theorem 5: Let R(X,Y,Z), S(X,Y,V) and T(Y, Z,
W) be the projections of U(X, Y, Z, V, W), where X, Y,
Z,V, and W are disjoint. Assume the following:

(1) The strong MVD: X——Y holds forSand Y-Z

holds for T.
(2) InU,Y determines Z-values independently of X.
(The meaning is the same as Theorem 2.)
Then X——Y does not hold for R.
Proof: Let Z,={z,} and Z, ={z,} hold in the proof of
Theorem 2. Then the proof of Theorem 5 is the same as
that of Theorem 2. [

When one specifies the MVD: X——Z, he has to
confirm that Z is independent of the attributes other
than X and Z. The confirmation fails, however, because
the FD: Y—Z already exists. From another viewpoint,
if X—Z realy holds, not X— —Z but X—»Z must always
be specified because the existence of FD’s is much more
definite than that of MVD’s, and because X——Z gives
less correct information than X—Z. Once X—Z has been
decided not to hold, the relationship between X and Z is
neither one-to-one nor many-to-one, and X—Z should
never be derived from X—»—Z and Y>Z. (X—>—>Z is
wrong if Y—Z holds.) Therefore, one should not expect
to get a new FD by FD-M VD2 which he did not initially
specify. Instead, he must examine his initial specification
for errors if such an FD appears.

For example, if one specifies DEPT— —»PHONE and
EMP—-PHONE (or DEPT--EMP and EMP-
PHONE) in R(DEPT, EMP, PHONE, - -), he gets the
invalid FD: DEPT—-PHONE which states that there is
only one telephone in each department. (DEPT——
PHONE and DEPT— —EMP are not valid in R.) FD-
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MVD2 is more misleading than transitivity because such
an invalid specification tends to occur especially when a
relation has a large number of attributes.

As another example, let us examine the relation
R(LANDLORD, ADDR, OCCUPANT,---) and the
data dependencies: LANDLORD——ADDR, OCCU-
PANT—-ADDR, etc. which appears in [3]. From these
data dependencies, the authors in [3] derived the FD:
LANDLORD-ADDR. However, the same authors also
concluded, based on their analysis of the real world
situation, that each landlord may own many buildings.
As long as this analysis is true, LANDLORD—ADDR
never holds. Such an invalid derivation comes from the
incorrect MVD: LANDLOAD— —-ADDR.

4. Conclusions

We have discussed multivalued dependencies from the
semantic point of view and made clear the following
items:

(1) With a minor exception, the relations which are in

BCNF but not 4NF are all key relations.

(2) The real transitivity condition for multivalued
dependencies never occurs in a natural sense.

(3) When two given MVD’s do not originally meet
transitivity, it is always possible, by augmenta-
tion, to derive the transitivity condition. Since
the results obtained by such derived transitivity
can be obtained by other MVD rules, there is
thus no need to explicitly derive the transitivity
condition.

(4) The assumption of FD-MVD2 rule never holds
in a natural sense.

We have shown that the exceptions of (1), (2) and (4)
can not be semantically accepted. In practical database
design, the results of (2), (3) and (4) make transitivity and
FD-MVD2 meaningless and harmful as inference rules.
Their usefulness remains only as error chekers. If the
database designer find the condition of transitivity or
FD-MVD?2 in his initial specification, he must re-examine
it to find errors.

The above problems closely relate to the fact that
MVD’s can not cover all one-to-many and many-to-
many relationships between attributes, and they are con-
text sensitive. Therefore, to extend our initial motivation,
more research is needed for seeking a better representa-
tion of data dependencies.
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