Invited Paper

An Overflow/Underflow-Free Floating-Point
Representation of Numbers®

SHOUICHI MATSUI** and MASAO IRI***

A new floating-point representation of numbers is proposed to cope systematically with the troubles in
numerical computation due to exponent overflow/underflow in conventional floating-point representations.

The proposed representation resolves the phenomena of overflow and underflow and, at the same time,
attains higher precision for numbers which are neither too large nor too small, by making mobile the boundary
between the field for exponent and that for mantissa in a word.

A number system including ‘“‘non-numbers” is also proposed which is closed with respect to the four arith-
metic operations. The effectiveness of the proposed system is shown by numerical examples.

1. Imtroduction

For the numerical computation on a computer, a real
number (or its approximation) is usually represented in a
register of a fixed length in the form of a “floating-
point” number. In the earlier days the fixed-point rep-
resentation of numbers was commonly used, but, due to
cumbersome problems related to “scaling”, the floating-
point representation, which can handle numbers over a
wider range with the same relative precision at the sac-
rifice of a few significant digits to be allotted to the ex-
ponent, has superseded the fixed-point representation.
Among a large variety of theoretically possible floating-
point representation, the IBM-type (with the base 16, the
mantissa represented by the sign and the magnitude, and
7-bit exponent biased by 64) is now prevalent. However,
the more users experienced this type of representation of
numbers for numerical computation, the more com-
plaints arose. The exponent overflow/underflow is one
of the most serious difficulties. S. Hitotumatu [7] dis-
cussed this issue. In general, as R. W. Hamming [5]
points out, the range of the distribution of the exponents
of numbers becomes broader and broader in the course
of computation, so that the magnitudes of numbers are
apt to overstride the pre-determined range, e.g. (16-2°,
162%=(10"77, 1077). Careful scaling for avoiding this
trouble would make the floating-point arithmetic less
attractive, since it would invalidate the most important
advantage of being scaling-free.

A floating-point number system was proposed by W.
Kahan [10] to improve the undesirable properties of the

*This paper is a translation from Japanese of Transactions of
IPSJ, Vol. 21, No. 4 (1980), which received an award as the 1980
winning paper of IPSJ.

**Information System Department, Economic Research Center,
Central Research Institute of Electric Power Industry, Ohtemachi,
Chiyoda-ku, Tokyo 100, Japan.

***Department of Mathematical Engineering and Instrumenta-
tion Physics, Faculty of Engineering, University of Tokyo, Hongo,
Bunkyo-ku, Tokyo 113, Japan.

Journal of Information Processing, Vol. 4, No. 3, 1981

IBM-type. His proposal consists basically in

(i) alloting a larger part of a word to the exponent,
and

(ii) preparing “Not-A-Number (NAN)”s to guard

against still possible overflow/underflow phe-
nomena.

Other fundamental problems concerning the floating-
point representation of numbers, such as the choice of the
bases (=2, 4,8, 16 etc.) [1, 2] (see also the references
there) and representations different from the conven-
tional ones [4, 6], have recently been given attention.

There is a claim [7] that the variable-length word would
resolve all the difficulties, but, from the standpoints of the
cost of memories and computation time, this kind of
representation will not be practical except for extremely
special purposes. Hence, we shall not discuss it here.

In this paper, we propose an ideal floating-point rep-
resentation of real numbers under the condition that a
number be represented with a fixed-length word. We
discuss briefly also the characteristics of the proposed
representation, its implementation, and examples of
application to numerical computation.

The basic ideas of the proposed representation may be
described informally as follows.

(i) When a number is represented in a fixed-length
word, “bits™ are allotted to the more important informa-
tion with the higher priority. For example, if a number is
represented by an exponent and a mantissa, a sufficient
number of bits are assigned to the exponent first, and
then the remaining bits are assigned to the mantissa. If
the exponent is too large (or small) to be expressed in a
word, then another form of representation is introduced,
in which the exponent itself is represented by the “man-
tissa of the exponent” accompanied by the “‘exponent of
the exponent”, and a sufficient number of bits are as-
signed to the latter. This process will be repeated in a
similar manner towards more complex representations.
(ii) A number system containing ‘“‘non-number’s is
established, which is closed under the four arithmetic
operations, and which allows users to have complete

124

command of the numerical computation at a program-
ming-language level (i.e. an overflow/underflow never
interrupts the normal execution of computation), where
the symmetry of the system with respect to the four
arithmetic operations is taken account of.

The idea (i) is found, though incompletely, in R.
Morris [13], and an exercise in D. E. Knuth [11] (Exercise
17 of Sec. 2.1 of Chap. 4) seems to suggest such a direc-
tion. In this paper, we shall extend the idea in full detail
to propose an ideal floating-point number system. The
idea (ii) which was ambiguously discussed in Kahan [10}
is almost independent of (i). We shall show that, under
some reasonable assumptions, the ‘“non-number’’s are
determined uniquely.

2. Basic Ideas

2.1 Variable-length Exponent and Its Generalization

In a floating-point number system with the base § (=2,
4, 8, 16 etc.), a real number x is represented as

sl
(Level 0) x=(=D%xFxpt~hH *E @.n

where s, and s, are either 0 or 1, E, is a nonnegative in-
teger, and F is a real number which is normalized as

1>Fz 1/ (2.2)

or
B>F21. (2.3)

For the normalization condition, the former (2.2) is
widely used, but, for the reasons stated later, we adopt
the latter (2.3) in the following. For any non-zero num-
ber x, the normalization condition determines its rep-
resentation of the form (2.1) uniquely.

Since the number of bits to be allotted to F and E; is
limited by the length of a word, it is obviously best to
represent the exponent part E,; exactly (if it is possible)
and then to allot the remaining bits to the mantissa part
F. In fact, the approximation error due to the rounding
of the mantissa to a finite length is less significant than
the error due to the variation of the exponent E; by +1.

By doing so, we can allocate a larger part of a word
than in the conventional case to the mantissa if |log,|x|
is small, since the number of bits required for the ex-
ponent is small. As |log,|x|| becomes larger, the number
of bits for E, increases and that for F decreases.

For those numbers, for which |logg|x|| is so large that
E, may occupy most bits of a word, we are natually
led to another kind of representation which we shall call
the “level-1”’ representation:

s 22
(Level 1) x=(—1)%x Fx g(-1) 'xEixp* (2.4)

In this level, there is no room for the mantissa F so that
we can say nothing more than that F lies between the
upper and lower end of the normalization (2.3). E; and
E, are determined so as to maximize the length of E;
under the condition that E; and E, can be stored in a

S. MaTsul and M. Irt

word and that they satisfy
Ey x P SE<(E +1)x %, (2.5)

where E is the exponent E,; in the expression (2.1) when
the number is expressed on level 0. We can introduce
“higher levels” of representations in a similar manner.
For example, for so large a number that the E, in (2.4)
may occupy most bits of a word, the level 2 is intro-
duced, where a number x is represented as follows:

Ej x ﬂEJ

(Level 2) x=(—1)%0x Fx p-1 'xExs .26

In (2.6), F is a number which satisfies the condition (2.3),
E, is a nonnegative integer which satisfies the condition

E3
1SE <pm"f 71, @7

and E, and E, are determined so as to maximize the
length of F, under the condition that they can be stored
in a word and they satisfy the condition

BE*E" <E<ax pEF XL, 2.8)

where E is the E, in (2.1) when the number is expressed
on level 0. Higher levels such as level 3, 4, 5,- - -are de-
fined similarly.

For the actual implementation, additional informa-

tions, such as

(i) the level on which a number is represented,

(ii) a pointer to the boundary between the field for
F and that for E; (in the case of the level-0
representation), or between E; and E;,, (in the
case of the level-i representation with i=1),

are to be stored also in the same word.

2.2 Choice of the Base

The choice of the base of the number system is known
to be important, and, judging from various theoretical
arguments as well as experimental evidences, the best
choice today should certainly be to take 2 for the base
[1, 2] (see also the references there). Adopting the base 2
is advantageous also because we can suppress the first
bit (i.e. the most significant bit) of the mantissa, which is
always “1” in view of the normalization condition.

2.3 Sign-magnitude Notation

The representation of the mantissa as well as that of the
exponent must be in the ‘‘sign-magnitude” notation,
instead of “two’s or one’s complement” or “‘biased”
notation, in order to realize the advantages (mentioned
in §2.1 and §2.2) of the proposed representation. In
passing, the sign-magnitude notation with the normaliza-
tion condition (2.3) makes the number system ‘sym-
metric”’ with respect to the four arithmetic operations.
This property of the symmetry is considered to be one
of the desirable characteristics of the system [14]. Note
that, for a number with the exponent of the largest
absolute value, the mantissa is always equal to “1” in
this system.

An Overflow/Underflow-Free Floating-Point Representation of Numbers

2.4 Rounding

The round-to-the-nearest is adopted.

2.5 “‘Non-numbers’’

It is obvious that, within a single fixed-length word,
only a finite number of real numbers can be distin-
guished from one another on the one hand, and on the
other, that numbers larger (smaller) than the largest
(smallest) representable number may possibly appear
in the course of computation. Therefore, we must in-
troduce into our number system ‘“‘a number that is larger
(smaller) than a certain number”. It is compared to
“+00” (“—00”). We shall take those “numbers which
are not number in the usual sense” into our system,
calling them ‘“non-numbers”. The number system
containing non-numbers in addition to ordinary numbers
should be closed with respect to the four arithmetic
operations, so that the computation may not be inter-
rupted by the operating system even when an overflow/
underflow takes place. Then, we shall be able to describe
every control of computational flow at a programming-
language level, without using, e.g., the ON-statement in
PL/I. Kahan also discusses such “non-number’’s, “Not-
A-Number (NAN)”s in his proposal [10], but they are
not defined without ambiguity. We will determine such
“non-number”’s without ambiguity on the basis of the
requirement of the symmetry of the number system.
This is discussed in detail in Chap. 4.

3. Implementation of the Proposed Floating-point
Number System

In practice, we can realize only a finite number of
levels, so that we have to content ourselves up to a certain
level. Here, we first consider the implementation of the
“level 0”. Higher levels may be implemented in a similar
way.

3.1 Implementation of Level 0

For a real number x (#0) expressed as in (2.1) under
the normalization condition (2.3), we have the bit-
strings of F and E looking like

F=(1.f2fs " fu)s @.n
E=(le,_,e,_,--€,) (or E=0). 3.2)
Therefore, the L=m+n bits

Sofafs Su€n-1€n-2" €15,

are necessary to represent x, where it is understood that
E=1if n=1 and E=0 (and no extra bit is needed for s,)
if n=0. L being fixed, n takes a value in the range from 0
to L—1. To hold the value of n which is the “pointer”
to the boundary between the field for the mantissa and
that for the exponent, [log,L] more bits are needed.
Therefore, the L should be determined as the maximum
integer which satisfies

125

L+[log, LIS W,, (3.3)

where W, is the word length. Clearly, for any x, its rep-
resentation in this form is unique, since we regard the
ideal zero (“0”) as a “non-number” in this system.
(See Chap. 4.)

3.2 An Example of Implementation of Level 0

In this section we present an example of actual im-
plementation of level 0. First, we assume that a word
consists of 64 bits. Therefore, we have L=58 and
[log,5871=6. The data structure for the level 0 is shown in
Fig. 1. The length of the mantissa (without the sign bit)
varies from 58 to 1 (including the suppressed first bit),
and consequently, that of the exponent (with the sign bit)
Varies from O to 57 (including the most significant bit,
which is suppressed, when B=ns0). Therefore, the
numbers expressible on level 0 range widely, i.e. from
about 1071°'° to about 1010'°,

The values of B from 58 to 63 are meaningless, but
they can be used to indicate (i) non-numbers, (ii) higher-
level representations, etc.

The printing format of a level-0 number may be de-
cided on the same principle as the partition of a word
into the mantissa and the exponent part was based on.
A specified field length of printing is divided into two
parts, one for the exponent and the other for the man-

" tissa. First, sufficient digits in the field are allocated to

the exponent part, and then the remaining digits are
allocated to the mantissa which is normalized in the form
(X.XXX:-). (See Chap. 6 for an example.)

For the input formats, we allow all the formats which
have been used in conventional computer systems.

4. A Floating-point Number System Including Non-
numbers

A number system for numerical computation should
desirably be closed at least with respect to the four arith-
metic operations, so that, even if “an illegal pair of
operands” appears, it should not disturb the normal
progression of a programme. In general, a number rep-
resented within a fixed-length word is to be regarded as
an interval rather than a point on the real line, regardless
whether the width of the interval is explicitly expressed or
not. Let us begin with the set of nonzero real numbers
RYUR™, where

58bus
M bits Noits

" e - eels|B-n

mantissa part (—1)YSoF=(—1)o X (1.fofs" - fm)2
exponent part (—1)S1E=(—1)S1 x(ley," - -€2€1)2
B=n points to the boundary between the mantissa part
and the exponent part.
(B=0,1, --- ,57; E=0 when B=0)
Fig. 1 Data structure for a floating-point number in the proposed
representation (level 0)

126

R* ={positive real numbers}
and “.n
R~ ={negative real numbers}.

Only part of the elements of R* UR™ can be represented
in the form shown in Chap. 3. For the symmetry and
closedness of the number system, the following 7 types of
intervals (as well as those types of intervals which are
defined with < in place of £) are necessary and suffi-
cient:

(i) {xla<x<b;a,beR*}, {xlasx<bh;a, beR™},

(ii) {xla<x;aeR*}, {x|x<a;acR7};

(iii) {x|0<x<a;aeR*}, {xlasx<0;aeR7};

(iv) {x|xZaorb=<x;aeR™,beR"};

v) {xlagx<b;aeR", beR™};

(vi) R*,R™;

(vii)) R(=R*UR™U{0}).

In fact, starting from intervals of the basic type (i), all the
other types of intervals can be produced by the four

arithmetic operations. The following symbols are used to
denote the above 7 types of intervals, respectively.

(i) +num, —num;

(i) +o0, —o0;

(iii) +0, —0;
(iv) oo;
v 0
(vi) +72, -7
(vii) 2.

The intervals of types (ii)~(vii) are called “non-
numbers”, which are schematically shown in Fig. 2.

We regard a number which is representable in the form
shown in Chap. 3 as the representative point of an inter-
val of type +num, and assume the result of an arithmetic
operation on two numbers of that kind to be one of the
numbers and non-numbers of the above 7 kinds, as
follows.

a. If the result is representable in the form shown in

Chap. 3, then round it to an element of +num,

S. Matsul and M. Ir1

Fig. 2 Schematic diagram of the proposed number system in-
cluding non-numbers.

if necessary.

b. If the absolute value of the result is too large to be
represented in the form of Chap. 3, then denote it
by +oo0.

c. If the absolute value of the result is too small to be
represented in the form of Chap. 3, then,
cl. if the mantissa preserves information on the

sign, then denote it by +0;

c2. if the mantissa carries no information on the

sign, then denote it by 0.
The tables for the four arithmetic operations among
numbers and non-numbers are given in Tables 1, 2, 3 and
4. These tables will explain how all the 7 types of inter-
vals actually appear, and why those non-numbers are
necessary and sufficient for the number system to be
closed.

The order among numbers and non-numbers is defined

in terms of the sign carried by the result of the subtrac-
tion operation as follows:

X>Y iff the sign of X—Yis “+”;
X< Y iff the sign of X—Yis “—";

Table 1 Addition table for the number system including non-numbers.

op2
opl +num —num +00 —© +0 —0 +? -? © ? 0
-+num +num +num +00 —0 +num +num 47 ? © ? +num
+00 +0,0
—num +num —num + 00 —00 —num —num ? -? [+ ? —num
+0,0 —00
+00 + 00 + 00 +o00 ? +00 + o0 +00 ? ? ? +00
—o0 —00 —00 ? — —o0 —00 ? —00 ? ? —00
+0 +num —num + 0 —o0 +0 0 +? ? © ? 0
—0 +num —num + o0 —00 0 —0 ? -7 0 ? 0
+? +? ? + o0 ? +? ? +? ? ? ? ?
—? ? -7 ? — 0 ? -7 ? -? ? ? ?
0 0 o] ? ? 0 o] ? ? ? ? <]
? ? ? ? ? ? ? ? ? ? ? ?
0 +num —num + 00 —0o0 0 0 ? ? 9] ? 0

An Overflow/Underflow-Free Floating-Point Repr

Of Nuulb:r 'S

127

Table 2 Subtraction table for the number system including non-numbers

op2
opl +num | —num + 00 — +0 -0 +7? —-? © ? 0
+naum | £num +num —00 +-00 +num | +num ? +7? 0 ? +num
10,0 oo
—num —num +num —0o0 + 00 —num —num —? ? 00 ? —num
—00 +0,0
+0o0 +00 +o0 ? + o0 +00 +00 ? +0o0 ? ? +00
— — 00 —0 — 0 ? —0 —© -0 ? ? ? —
+0 —num +num —00 + o0 0 +0 ? +? s3] ? 0
-0 —num +num — + o0 -0 0 —-? ? © ? 0
+? ? +? ? + 00 ? +? ? +? ? ? ?
—-? —? ? —0 ? —? ? —-? ? ? ? ?
0 © © ? ? 9] © ? ? ? ? [+
? ? ? ? ? ? ? ? ? ? ? ?
0 —num | +num —00 +00 0 0 ? ? 0 ? 0
Table 3 Multiplication table for the number system including non-numbers
op2
opl +num —num -+ 00 — o0 +0 -0 +? —? 00 ? 0
-+num +num —num +o00 —00 +0 -0 +? -? © ? 0
fo0, +0| —o0, —0
—num —num +num —00 + 00 —0 +0 -7 +? 0 ? 0
—o0, —0 | -+o0, +0
+ 00 + 00 —0o0 +o0 —00 +? -7 +? -7 [os] ? ?
— —0 + o0 —00 +00 —? +? -? +? 0 ? ?
+0 +0 —0 +? —-? +0 -0 +? -7 ? ? 0
—0 —0 +0 -7 +? —0 +0 —? +? ? ? 0
+? +? —-? +? -7 +? —-? +? -7 ? ? ?
—? —? +? —-? +? —-? +? -7 +? ? ? ?
© 0 o) 0 00 ? ? ? ? © ? ?
? ? ? ? ? ? ? ? ? ? ? ?
0 0 0 ? ? 0 0 ? ? ? ? 0
Table 4 Division table for the number system including non-numbers
op2
opl +num —num + — 00 +0 —0 +? -? [o9] ? 0
+num -+num —num +0 —0 +00 —00 +? -7 0 ?)
+o00, +0 | —o0, -0
—num —num +num Y +0 —o0 -+ 00 -7 +? 0 ? ©
—o00, —0 | 400, +0
+ 00 +o00 —o0 +? —? + — o0 +? -7 ? ? 0
—0 —0o0 + 00 —? +? — 00 +00 —-? +? ? ? 0
+0 +0 -0 +0 -0 +7? —? +? -7 0 ? ?
-0 | —0 +0 —0 +0 —-? +? -7 +? 0 ? ?
+? +? -? +? —-? +? —? +? —? ? ? ?
—-? —-? +7? -7 +7? -? +7? -7 +? ? ? ?
o) 00 © ? ? o¢] 0 ? ? ? ? 0
? ? ? ? ? ? ? ? ? ? ? ?
0 0 0 0 1] ? ? ? ? ? ? ?

X=Y iff X and Y have the same representation, i.e.
they have the same bit-pattern.

With this definition, we have, for example,
—oo<-—num<—-0<+0<+num< + 0,
—num<0< +num,
if x<y and y<z, then x<z.

However, it is not always true that

if x=y and u<v, then x+u<y+v.

5. Representation Error in the Proposed System

Usually, for a real number x, the representative point
x* of the interval containing x is obtained by rounding
the next lower digit of the least significant representable
digit of the mantissa of x. This convention is adopted
for the level-0 numbers in our system, and the rep-
resentative points of the numbers of higher levels are
defined similarly.

The “representation error” of a number x is, then,

128

defined by

[x*—y| .
| » has the same representative

€,cp(x)=max {
y [y

point x* as x}. é.1)
The “unit of rounding” of a number x is defined by

u(x)=max{e,,(»)|y has the same exponent as x}.
y
(5.2)

As is easily seen, for a floating-point number x with the
base f and the L-digit mantissa, we have

ux)=2 1 3)

in the case where the round-to-the-nearest is adopted.

For the ‘“non-number”s, it may be assumed that
e,.p(x) is undefined, or defined to be co. In this respect,
it is natural to take 0 and ‘“+0” for ‘“‘non-number”’s,
rather than numbers.

The “representation error” as well as the “unit of
rounding” is a good measure in terms of which to com-
pare different manners of floating-point representation.
We shall consider here the following four typical floating-
point number systems for comparison. For convenience’
sake, the comparison will be made using the 64-bit word.

(1) IBM-type: The base is 16. The mantissa has
56 bits. The rounding is “‘chopping”. The exponent
has 7 bits (“biased” notation). The sign of the
mantissa occupies 1 bit. (This is the so-called
DOUBLE-PRECISION number).

(i) Kahan-type: The base is 2. The mantissa has
52 bits (substantially, 53 bits since the first bit is
suppressed). The rounding is the round-to-the-
nearest-to-even. The exponent has 11 bits (““biased”
notation). The sign of the mantissa occupies 1 bit.
(“DOUBLE” [8].) “Denormalized numbers” are
also used to resist the underflow to some extent.

(iii) Morris-type: The adaptation of his original
proposal with the 36-bit word for the 64-bit word.
The base is 2. The mantissa and the exponent use
61 bits. There is a pointer, G (3 bits), to the bound-
ary between the field of the mantissa and that of the
exponent. The rounding is the round-to-the-
nearest. The length of the exponent field is specified
by G as

(i) G+1 (Morris’ type (i)),

or
(i) G+4 (Morris’ type (ii)).

(iv) Our system: See Chap. 3 for the details.
(We mainly consider the level 0. The rounding is
the round-to-the-nearest as in Chap. 2.)
The normalization condition is (2.2) for (i) and (iii),
and (2.3) for (ii) and (iv).

S. MaTtsul and M. Irt

<4> this system

e - - ---~=-<2> Kahan-type DOUBLE

—— - —— = <> [BM-type DOUBLE PRECISION

-60f
) L :
Q 5 10 15
[logylx]|
R s L
1 32 1024 32768

Iefor [

Fig. 3 Representation error e,.,(x) of various systems.

58]
. <3> <4>
= W"?" type this system
j§| (”)'I" (level)
-§ L
<1> |
1BM-type <2>
¥ pousle 1y Kahan-type
PRECISION I. DOUBLE
0 "
I
;F "-'Tf
- 40L :
4
h
i
- 4>
.3’5 this system
§» (level 0)
{
~50r /) lekararls
denomalized
number
<3>
Morris’ type (ii)
Morris? type (i)
_60-
1 L ‘: !__ - ll___‘_>
0 10 57 57
09,E oot

A . et
2 10 10%
X or IX|™

Fig. 4 Units of rounding u(x) for various systems.

1d0’5 b 'Odola

In Fig. 3 the representation error e, (x) for the num-
bers whose absolute value is neither too large nor too
small is shown. In Fig. 4 the unit of rounding u(x) is
shown for a wider range of numbers.

As is seen in Fig. 3 and Fig. 4, the proposed rep-
resentation of numbers has no “‘discontinuity” in
precision, but the representation error ‘‘continuously”
depends on the magnitude of a number. Furthermore,
higher precision than the IBM-type or the Kahan-type
is realized for numbers of moderate magnitude.

An Overflow/Underflow-Free Floating-Point Representation of Numbers

6. Numerical Examples Computed by Means of the
Proposed System

6.1 Experimental Programmes

The proposed floating-point number system is im-
plemented in the manner shown in Chap. 3 as a system of
subroutines and functions written in FORTRAN on the
HITAC 8800/8700 Computer Complex of the Computer
Centre of the University of Tokyo. The experimental
system of programmes consists of
(1) the subroutines to perform the four arithmetic

operations (approximately 300 lines in total);

(2) the function subprogrammes to perform the input/
output of numbers (approximately 200 lines in
total);

(3) the function subprogrammes to perform the type
conversion of the data in FORTRAN into those in
our system and vice versa (approximately 200 lines
in total);

(4) the function subprogrammes such as square root,
exponential, and logarithm (approximately 200 lines
in total);

(5) the auxiliary subroutines for comparison, rounding
and pack/unpack operation of the mantissa and the
exponent (approximately 300 lines in total).

All the non-numbers mentioned in Chap.4 can be treated

in the current version.

These subroutines and functions are merely for ex-
perimental use, so that they are not fast; e.g., for usual
numerical computations, they run 600 through 1,000
times as slowly as the conventional FORTRAN state-
ments on the HITAC system. A considerable speed-up,
however, can be achieved by coding those subpro-
grammes in an assembly language. Moreover, it is theo-
retically possible that the proposed system runs as fast
as the IBM-type or the Kahan-type number system if
special-purpose arithmetic units are incorporated in the
CPU.

6.2 Numerical Examples of Practical Computations

In this section, we show the effectiveness of the
proposed number system by applying it to practical
computational problems. There are so many difficult
problems to solve by a simple program because both very
large and small numbers appear in the course of com-
putation. For example, the Graeffe method for algebraic
equations is difficult to implement because coefficients
may become very large or small quickly, even if the zeroes
are neither very large nor very small. In order to solve
these problems by a computer with a conventional
floating-point number system such as that of the IBM-
type, a highly sophisticated program equipped with a
number of tricks to protect against overflow/underflow
will be required.

The proposed system enables the users to solve those
difficult problems by simple programs, and the solutions

129

attained are generally no less accurate than those at-
tained by complicated (or sophisticated) programs with
conventional floating-point number systems.

6.2.1 Graeffe Method

Let us consider the solution of algebraic equations by
the Graeffe method [18], where both very large and very
small numbers often appear in the course of computa-
tion. For simplicity, we restrict our attention to the
polynomials with all the zeroes positive real.

Let a; (i=1, - -, n) be the zeroes of a given polynomial

P(X)=x"—a,_x" '+ +(=1)""lax+(=1)a,,

and let the polynomial with zeroes a?” (i=1, -, n) be
POx)=x"—a W x" 1+ ...
+(= D" ax+ (- 1yaf’. (6.1)
Then af” (i=0,- -, n—1) satisfy the simple recurrence
relation:
aP =a,, (6.2)
= ¥ (=D aPa® (v=0, 1,--),
i+j=k

and the v-th approximations to «; are given by
&= (@, /a7, ©6.3)

Fig. 5 shows the iteration process using our system for
the polynomial

P (x)=x®—11x" +45.35x° — 88.55x" + 86.7542x*
—43.274x% +10.984x% — 1.32x +0.0576
=(x—-0.1)(x~-0.2)(x—-0.3)(x—0.4)(x—~1)
X (x=2)(x=3)(x—4), 6.4)

and Fig. 6 shows that for the polynomial
Py(x)
= x*~10.43857593020614x> + 40.58740567587410x
—69.60408570545396x7 + 44.36715614906059
=(x=D(x—e)x—/T4)(x—3)
(e=2.718281828- - -, . /7.4=2.7202941017. - -).
(6.5)

In Fig. 5, all the zeroes are determined to a sufficient
precision after 7 iterations (v=7). Note that the sub-
sequent iterations do not deteriorate the accuracy. Itera-
tions over the 6-th is impossible with the IBM-type
representation of numbers.

In Fig. 6, it is seen that, due to the existence of nearly
multiple zeroes, more iterations are required to get good
approximations for zeroes, and that the final approxima-
tions are not very accurate. But, in our system, all the
zeroes are determined after 16 iterations (v=16) with
good accuracy, up to about 10 decimal digits. The IBM-
type cannot proceed farther than the 6-th iteration, at
which approximations are very poor—up to about 2
decimal places in the worst case. Neither can the Kahan-
type proceed farther than the 7-th iteration at which it
gives no better results than the IBM-type.

130

v=1
3. 3177&0500000000 EE-2
4. 770422000000000 EE-1
1. 437877247999759 EE

S. Martsul and M. Ir1

y upper bound of the Kehan-type

1
1. 95410022€000001 EE 2
. 293775057579999 EE 2
- 9.027198200000001 EE 2
2. B202729%9999939 EE 2
- 3.030000000000000 EE 1
B 33956%428721113 EE-2
1.705584280072372 EE-1
2.ﬁ2§§ﬁ1529531.26 EE-1
EE-1
‘7 585743805733726 EE-1
1.7B890847510520749 EE0 =ROOT(&)
3.0508739212180358 EEO =ROOT(7)
5. 5045435778091540 EE0O =RDOOT(8)
v=5
2.155358256471273 EE-40 =A{ 1)
- 2.155358267214589 EE-8 =Al 2)
5. 01834615819841 EE 14 =A(3) é
- 2.70B446408510473 EE 31 =A(4) I
1. 46B113845654593 EE 44 =A(5) =
- 1.46B11384698750 EE 44 =Al &) I
3.41822664232871 EE 34 =A(7) 2
- 1.84485970961938 EE 19 =A(B) el
9. 999993999227237 EE~2 =ROOT(1) ‘S
1.999999855136527 EE-1 =ROOT(2) o
2. 999990200347525 EE-1 =ROOT(3) §
4.000012555% EE-1 =ROOT(4) 2
9. §999999979927223 EE-1 =ROOT(5)
1. 999999£551364240 EEO =ROOT(&) 3-
2. 9999908Q003675364 EEO =ROOT(7) &
4.000012555971397% 56 =ROOT(B)i
v=6
4. 64556925788690 EE-BO =A{ 1)
- 4.58556925788701 EE-16 =A(2)
2. 51836814092956 EE 29 =Al 3)
=~ 7.33430419960579 EE 462 =A(4)
2.15535826671270 EE 88 =A(S)
- 2.155358264671274 EE 88 =A{ 6)
1. 16842205763348 EE 6% =Al{ 7)
~ 3.40282270354638 EE 38 =A(8)
9. 999999999999994 EE-2 =ROOT(1)
1. 999999999999238 EE-1 =ROOT(2)
2. 999999999527234 EE-1 =ROOT(3)
4. 600000000630681 EE-1 =ROOT(&)
9. 9599999999999%4 EE-1 =ROOT(5)
1.995999999999@341 EEO =ROOT(6)
2. 9999999995272459 EEO =ROOT(7)
4. 0000000005306708 EEO =R0O0OT(8)

converged

v
2. 1581313729824

- 2.15813137296240 EE-31
6.34217809318084 EE 53

~- 5.3752017006758 EE 125
A. 6455692578868 SE 176

~ A.6455692578870 EE 176
1.3652101047498 EE 138

— 1.15792089237326 EE 77
9. 99999999999999Z EE-2 =RDOT(1
2. 000000000000006 EE-3 =ROOTC &
2.999999999999984 EE-1 =ROUT(&
4. 000000000000013 EE-1 =ROOTC 4
9. 9999999999999%4 EE~1 =ROOT(T
2. 0000000000000022 EE0 =ROOT(¢
2. 9999999999999931 EEO =ROOT(7
4. 0000000000000027 EE0 =ROOT(€

v=38
4. 6575310230509 EE-318 =A(1)

~ 4. 65753102305127 EE-62 =A{ 2)
4. 0223202965623 EE 117 =Al 3)

— 2.8935810936553 EE 251 =A(&)
2.1581313729823 EE 353 =A(5)

= 2.1581313729825 EE 353 =Al 6)
1. 8637985301109 EE 276 =A(7)

- 1.3407807929945 EE 154 =A(B)Y
9.999999999999997 EE-2 =ROOT(1
2. 0000000000000Q04 EE~-1 =ROOT(2
2. 999999999999984 EE-1 =ROOT(3
4. 000000000000013 EE-1 =ROOT(4
9. 999999999999994 EE-1 =R00TC 5
2. 06000000000000022 EEC =ROOTC &
2. 9999999999999751 EEO =ROOT(7
4. 0000000000000027 EEQ ~R0O0T¢ ©

v, =.30
2.298526 EE~133098622: =A{ 1)

= 2.2985271 EE-257244400 =AC 2)
5. 47463732 EE 493268927 =A(3)

=~ 2.670771 EE 1054705705 =AC 4)
1.516089 EE 1481950536 =A(5)

— 1.516090 EE 14B1990536 =A(&)
3. 612177 EE 1138762039 =A(7)

—~ 1.7616143 EE 644456993 =A(B)
9. 999999999999999 EE-2 =ROOT({
2. 000000000000005 EE-1 =ROOTC 2
2.999999999999984 EE-1 =ROOQTC O
4. 000000000000013 EE-1 =ROOTC 4
9. 999999999999994 EE-1 =RDOT(5
2. 0000000000000023 EEO =RDOT(&
2. 9999999999999953 EEQ =R0OATC(7
4.

0000000000000027 EEO =R0OT(©

Fig. 5 Iteration by the Graeffe method for P(x).

i upper tound of the Kahan-type

7

. 6662837510202 EE 210 =A(1)

. 9590447225817 EE 172 =A(2)

. 6227697791204 EE 116 =A(3)

. 17902661948570 EE &1 =A(4)

. 9999999999999518 EEO =R0OOT(1)
. 7045783330773281 EEO =ROOT(2)
. 7340770775614733 EEO =ROOT(3)
. 0000001622446730 EEQ =ROOT(4)

1
WHN=—o=0

v=1
1.968444544755123 EE 3 =A(1)
1.243233216278632 EE 3 =A(2)
2.829367444181849 EE 2 =Al 3)
2.778905609893071 EE 1 =A(4) g
1. 5830266601423515 EE0 =ROOT(1) 5
2.0961947379335359 EEO =ROOT(2) 1
3.1908602092232556 EEO =ROOT(3)]
5. 2715326138544105 EEO =ROOT(4)
3
ve=S5 ~
5.08125451548211 EE 52 =A(1) o
1. 1B320169534957 EE 43 =A(2) 'g
3.02539330106157 EE 29 =Al 3) H
2.01284256209763 EE 15 =A{ 4) 2
1. 99999321360375823 EEQ =RJIDTC 1) %
2. aa;shazis_zzzza EEQO =PGCOT(2) E
2.7735140870227926 EEO =RGIT(3D
3. 0077660744101009 EEQ =ROOT(&) i,
v=6
2. 5819147451107 €€ 105 =A(1)
1.39965879601065 EE 86 <Al D)
4.38981722472593 EE 58 =A{ 3)
3. 44645651957942 EE 30 =A(4)
1.9999999998191536 EEO =ROOT(1)
2. 6899448172238597 €E0 =RCOT(2)
2. 7357913512249693 EEQ =RCOT(3)
3. 0001740362911321 EEO =ROQT(4)

converged =¥

v =16

6.7375701284 EE 107941 =A(1)
3. 36284975669 EE 88213 =A(2}
4.01365489311 EE 59751 =A(3}
4. 15479228694 EE 31268 =Al 4)
1. 9999999999999518 EE0 =ROOT
2.7182818285931764 EEO =ROGT(
2.7202941016100584 EEQ =ROOT(
3. 000000000000923%2 EEO =ROOT(

SUWMN -

v =3
1. 577772 EE 1768518918 =Al 1)
3. 755240 EE 1445290321 =A{ 23
2.5108124 EE 978976272 =At 3}
2.0511857 EE 512305045 =Al 4)
1. 9999999999999318 EEO =ROOT(1
2.7182818265%517464 EEO =RDOT(2
3
4

1

2. 7202941014160686 EE0 =RDOT!
3. 0000000000009397 EEO =ROOT(

Fig. 6 [Iteration by the Graeffe method for P,(x).

In Fig. 7, the maximum relative errors of computed
zeroes together with the maximum magnitudes of the
coefficients are plotted against the iteration numbers.

6.2.2 Binomial Probability
Let us consider the problem of calculating the binomial

probability

N _
xe=|p Jprd" " (p+e=D (6.6)

for a large N, say N=2,000 [16]. An N as large as 2,000
usually appears in practical problems of inventory
control.

A simple program such as that shown in Fig. 8 will

An Overflow/Underflow-Free Floating

Point Repr

%

max|coefficient|

1limit of
the Kahan-type
the IBM-type

max|relative error|
3

=X
14,1

o

iteration counts

Fig. 7 TIteration by the Graeffe method for P,(x) and P,(x).

program 1
function Binomial(N, k:integer;p,q:reald:real;

real: x; integer: i;
begin x: .43

o k do
o N-k

5

XX(N-k+i)siXp;

x
i =
i xX:=x¥Xq;
r

,
adinl

x LA
518

end

Fig. 8 A simple program to calculate binomial probability.

1.148130695274 EE=1398 = XC 0)
9.185045562194 EE-1395 = X(1)
3.672181215765 EE-1391 = X(2
9.782690758799 EE-1388 = X(3
2.2246107084496770 EE-2 = X(1599)
2.229667352208012 EE-2 = X(1600)
2.228274680532679 EE-2 = X(1601)
2.219929082478250 EE-2 = X(1602)

Fig. 9 Example of binomial probability computed by
our system (N=2,000, p=0.8, g=0.2).

certainly fail because of overflow/underflow on a con-
ventional system,

On a conventional system, a more sophisticated pro-
gram which incorporates elaborate scaling techniques
will be needed to get an exact answer avoiding overflow/
underflow (see [16] for an example of complete program
of that kind).

If we use the proposed floating-point number system,
any simple program will work well, and even faster than
the sophisticated one. Examples of binomial probabilities
computed by the proposed system are shown in Fig. 9.

6.2.3 Divergence-convergence Boundary of a Quadratic
Transformation
Let us consider the problem of calculating the diver-
gence-convergence boundary of the quadratic transfor-
mation

=Yy ¥ Pfux‘x“ (k=1,2,---,n). 6.7)
A=1 pu=1
This kind of transformation characterizes the asymptotic
behaviour of the Newton-Raphson process near the solu-
tion (see [3] for details).

For n=2, the divergence-convergence boundary for
the fixed direction 6 is calculated by the algorithm shown
in Fig. 10 [3]. The restart step, i.e., step 3.1, of the algo-
rithm is used for avoiding overflow/underflow, and the
presence of this step increases the total computing time.

of Numbers

131

1° r0°1
22 xp*rycos8; ya+r sind; m<l

1
30 ot Ex geypy)

2 .
Y * £ (xm—l'ym-l)

T2
rm“ m * ym

1° if r >10%% or r <1073
= 'm = ‘m

w

n
2 .
then rj+ry/r, : goto 2°

w

I.

2° if m=15 then goto 4°

else m+mtl; goto 3°
4° r*(divergence-convergence boundary) + ro/xi5

Fig. 10 Procedure to calculate the divergence-convergence
boundary of the quadratic transformation (n=2).

Table 5 Comparison of the performance between the IBM-type
and our system for a quadratic transformation.

P1 Pz IBM-type Our System
#restart | #total #restart | #total
iterations iterations
0.0 0.0 0 75,000 0 75,000
0.0 0.1 4,742 134,706 0 75,000
0.0 1.2 7,586 155,816 0 75,000
0.0 10.0 10,000 169,332 0 75,000
37 2.5 10,000 180,666 0 75,000
N | S C—— _

Since the proposed system can handle very wide ranges
of numbers, no restart step is required, so that the total
computing time is not increased.

In Table 5, comparison of the performances of the
IBM-type number system and the proposed number sys-
tem is shown for the quadratic transformation

x' =f1(x,)= —2xy+2/3x(p,x+p,),

¥ =f2(x, =x"+y*+2/39(p,x+p,).
The divergence-convergence boundary of the transfor-
mation (6.8) is calculated for 6=0,=2ri/10,000 (i=
1,---, 5,000) to sufficient accuracy with the same stop-
ping rule on the two systems. Table 5 indicates that the
IBM-type system requires two restart steps for one 0,
on the average, while our system requires no restart step
and the total iteration is nearly halved compared with the
IBM-type.

(6.8)

6.2.4 6-j Symbols (Racah Symbols)

Many problems in quantum mechanics are formulated
in terms of angular momenta and their combinations.
6-j symbols (Racah symbols), as defined below, are the
coefficients used for combining angular momenta ([9].

Definition. 6-j symbols {{ ‘1{22{1;}
{jfﬁ 3} =AG j2j)AGLI)AW o)A L js)w {Jffzf},
1213 11243

@+b—0)a—b+c)(—a+b+o)!
(@atbtc+)!

Aabc)=

>

132

w{jifzja}z_ =D+ D!
111213 z F(Z,jl,jz,j;;, 11’ 12’ 13),
F(Z,j;,jz,j;;, 111 12’ 13)
=(z—ji—j—i)z—ji— L= (z—1,—j,—~13)!
x(z=lL=L=j)Gi+i+ L+ —2)!
X(jo+js+ L+ =D (js+j+5+1—2)),
where j,s and /s are nonnegative half integers such that
the three arguments appearing in one and the same
A(a b ¢) may satisfy the triangular inequality, and the
summation 3, is taken for all integers such that the argu-
ments of factorials may be nonnegative.

The calculation of the 6-j symbols has been tried by
many researchers. There are also some explicit formulas
for the 6-j symbols with relatively small momenta.
Numerical tables are available for the angular momenta
not exceeding eight [9, 15].

For nuclear physics, the 6-j symbols with small argu-
ments are sufficient, and they are easy to compute
directly from the definition. But, for some problems
such as ion-beam scattering, we have to combine rather
large angular momenta. In that case, a simple program
does not work due to overflow and underflow if we use a
conventional floating-point system. The proposed system
enables us to run a simple program without any trick to
get satisfactory results.

In Fig. 11, a few examples are shown of the computa-
tion of 6-j symbols with rather large angular momenta by
means of the proposed system.

6.2.5 Newton-Raphson Iteration

The Newton-Raphson iteration for the solution of
nonlinear equations is often embarrased by overflow/
underflow. As is well known, this iteration process con-
verges quadratically to a solution so long as the initial
approximation is sufficiently close to the solution, and,
in such a case, no overflow/underflow occurs. However,
if the initial approximation is far from the solution, the
convergence is slow, or, sometimes, a big jump takes
place, which may cause overflow/underflow. However,
the proposed system will work well even in those cases.
Some discussions are made in [12].

{IU 10 i$=-2.9191867806092l_7 EEZ3

20 20 2

==-5,02940545 -
{20) zg} 6456868522 EE-3
30 30 30

= 1,102553215969380 EE-
{30 3 30} 20 £
40 40 40 ‘

= 1.828306972163276 EE-
{qo 10 Lm} P08 B3
50 50 50

=-1.121574316503310 EE-
{50 50 so} 03310 EE-4
{60 60 6 = -1,006636256306322 EE-3
60 60 60 R2ss

Fig. 11 Examples of 6-j symbols for large angular momenta.

S. MaTtsur and M. Irt

7. Concluding Remarks

In this paper, we proposed basic ideas of a new
floating-point number system, compared it with the con-
ventional ones, and gave examples of its implementation
and numerical computations by means of it. The fol-
lowing problems are to be further investigated.

(i) Hardware implementation: The advantages
of our proposal will be more clearly proved by
implementing it by hardware arithmetic circuits.
The design and the actual implementation are
being done. Theoretically, it is possible to realize
as fast a speed as that realized by the conventional
floating-point arithmetic circuits.

(ii) Rounding-error analysis: ‘We have discussed
only the approximation error occurring when we
represent a real number in a fixed-length word.
The well-known analysis on the basis of the “fixed-
length mantissa” [18] does not apply to our system.
An analysis technique must be developed which
can deal not only with numbers but also with non-
numbers, and which is also capable of considering
propagation, accumulation, and magnification of
rounding errors in the process of numerical com-
putation.

(iii) Practical implementation of higher levels and non-
numbers: Input/output format of higher-
level numbers and non-numbers must be stand-
ardized. How many levels to consider will also
be investigated from the theoretical as well as
practical standpoint.

Acknowledgement

The authors are grateful to Professor Sigeiti Moriguti
of the University of Electro-Telecommunication, Profes-
sor Emeritus of the University of Tokyo, and Professor
Hideo Aiso of Keio University for their valuable sugges-
tions and comments given to the authors at informal
meetings. The authors are grateful also to the members
of their research group for helpful discussions. Those
suggestions, comments and discussions were very helpful
to the authors in improving the present paper.

Reference

1. BrenT, R. P. On the Precision Attainable with Various
Floating-Point Number System. IEEE Trans. on Computers, C-22,
6 (1973), 601-607.

2. Copy, W.J., Jr. Static and Dynamic Numerical Characteristics
of Floating-Point Arithmetic. IEEE Trans. on Computers, C-22,
6 (1973), 598-601.

3. Darte, T. Properties of Divergence-Convergence Boundary of
Quadratic Transformations (in Japanese). Journal of Information
Processing Society of Japan, 19, 6 (1978), 507-513.

4. EDGER, A.D. and LEg, S. C. FOCUS: Microcomputer Number
System. Comm. ACM, 22, 3 (1979), 166-177.

5. HamMING, R. W. On the Distribution of Numbers. The Bell
System Technical Journal, 40, 8 (1970), 1609-1625.

6. HEHNER, E. C. R. and HorspooL, R. N. S. A New Representa-
tion of the Rational Numbers for Fast Easy Arithmetic. SIAM
Journal on Computing, 8, 2 (1979), 124-134.

An Overflow[Underflow-Free Floating-Point Representation of Numbers

7. HITOTUMATU, S. Proposal of a New Standard Floating Point
Arithmetic System (in Japanese). Journal of Information Processing
Society of Japan, 20, 9 (1979), 793-797.

8. Iba, T. and GoTto, E. Overflow Free and Variable Precision
Computing in FLATS. Journal of Information Processing, 1, 3
(1978), 140-142.

9. Jupp, B. R. Angular Momentum Theory for Diatomic Molecules.
Academic Press, New York, N.Y., 1975.

10. KaHAN, W. and PALMER, J. On a Proposed Floating-Point
Standard. ACM SIGNUM Newsletter, Special Issue (Oct. 1979),
13-21.

11. KNutH, D. E. The Art of Computer Programming, 2: Semi-
numerical Algorithms. Addison-Wesley, Reading, Mass., 1969.
12. Marsul, S. On Numerical Computation Oriented Floating-Point
Number Systems (in Japanese). Master Thesis, University of Tokyo,

133

March 1981.

13. Morris, R. Tapered Floating Point: A New Floating-Point
Representation. JEEE Trans. on Computers, C-20, 6 (1973), 1678-
1679.

14. ReiNsH, C. H. Principle and Preference for Computer Arith-
metic. ACM SIGNUM Newsletter, 14, 1 (1979), 12-27.

15. ROTENBERG, et al. The 3-j and 6-j Symbols. Technology Press,
MIT, Cambridge, Mass., 1959.

16. STERBENZ, P. H. Floating-Point C
Englewood Ciliffs, N.J., 1974.

17. SWARTZLANDER, E. E. and ALexopouLos, A. G. The Sign/
Logarithm Number System. IEEE Trans. on Computers, C-24, 12
(1975), 1238-1243.

18. WiLKINSON, J. H. Rounding Errors in Algebraic Processes.
Prentice-Hall, Englewood Cliffs, N.J., 1963.

1p ion. Prentice-Hall,

