Short Note

A Primitive for Non-recursive List Processing

MasaYUKI SuzukL* KiyosHi ONo* and EncHi Goro*-**

A new LISP primitive rcons (reverse cons) is proposed, which can be used to transform a certain type of

recursively defined functions into iterative ones.

Rcons, which constructs a list in the reverse order (i.e., from head to tail), could be defined in terms of rplacd and

cons.

However, as a new primitive instead of a composite function, rcons can dispose of overheads in space and time
due to rplacd, used inside the composite rcons, in cdr-coding implementations.

1. Introduction

Two-bit cdr-coding LISP system was proposed [2, 5]
so as to represent lists compactly: a list is usually
represented as consecutive cells (a linear list), containing
its elements (car parts), without cdr parts, which would
connect the elements in conventional LISP systems.

A primitive constructor cons in the system can con-
struct linear lists in the direction from tail to head.
Although cons seems sufficient for recursively defined
functions, improved iterative versions of the functions
sometimes require a list to be constructed in the reverse
direction (see Section 2). However, cons or a combina-
tion of existing primitives cannot construct linear lists
in the reverse direction.

This note proposes a new primitive constructor rcons
(reverse cons), which constructs linear lists in the direc-
tion from head to tail. We think that rcons has two
significances:

1) Rcons has an intuitive meaning as another
constructor complementing cons especially in recursion
elimination (Section 2).

2) Rcons as a primitive can be implemented in cdr-
coding systems as efficiently as cons (Section 3).

2. Rcons as Another Constructor and its Application to
Recursion Elimination

We could define rcons as a composite function, which
has the same semantics as a more efficient implementa-
tion described in Section 3.

rcons [x; y]=
[null[x]— cons[y; NILJ;
atom[x]—error[];
T—cdr[rplacd[x; cons[y; NIL]]] 1]

Note that rcons appends a new element at the end of an
existing list by redirecting the cdr part of the last element

*Department of Information Science, Faculty of Science,
University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113, Japan.

**The Institute of Physical and Chemical Research, 2-1,
Hirosawa, Wako-shi, Saitama 351, Japan.

Journal of Information Processing, Vol. 4, No. 4, 1981

RCONS

z:= v:= rcons[NIL; NIL]

v

[

v:=rcons(v; A} v

]
= S Y

v := rcons|v; B] ;
T

=S FEE=

CONS

v:= cons[A; NIL]

v—[a 7]
v:= cons(B; v]
v [F—{+ 7

Fig. 1 Rcons and Cons.

of the existing list. Compare rcons with cons in Fig. 1.

From two constructors rcons and cons, we can choose
one of them in such a way that its direction of con-
structing a list is the same as the order of computation
of elements of the list. If the last element is computed
first, cons is to be preferred, and if the first element is
computed first, rcons is to be preferred. In this sense,
these constructors are complementary to each other.

Rcons is applicable to eliminating recursive functions
of a certain pattern, which is one of those described by
Risch [8]:

f[x; y]=[null [x]-s[y];
plx; y)-fledrlx]; y];
qlx; yl—cons[glx; y]; fledr[x]; y]I]
This pattern appears in many list handling recursive
LISP functions, such as append, union, and intersection
7.
The pattern can be transformed with rcons into:

f[x; y]1=progllv; z]
z: =v: =rcons[NIL; NIL};

A Primitive for Non-recursive List Processing

Loop
[null[x]— return[prog2[rplacd[v; s[y]]; cdr[z]]];
plx; y]-NIL;
qlx; y]—v :=rcons[v; glx; y1ll;
x :=cdr[x]; go[Loop]]

3. Rcons in Cdr-coding Systems

In cdr-coding systems, rcons defined in the previous
section might be time and space consuming owing to
rplacd, which usually requires an introduction of
invisible cells, and hence impairs the advantages of
cdr-coding systems, which intend to eliminate the space
for cdr parts. In other words, rcons thus defined could
not exploit the full advantages of both the recursion
elimination with rcons and cdr-coding systems. (See
Fig. 2)

However, rcons can be made as efficient as cons if it is
turned into a new primitive, taking advantage of a
storage allocation mechanism of cdr-coding systems.

In cdr-coding systems, a cell is usually allocated by
cons from one end of a free storage so that as many
elements of a list as possible reside side by side. On the
contrary, rcons, as a new primitive, can be arranged to
allocate a cell from the opposite end of the free storage
so that the order of allocation be the same as the order
of elements in a list.

In Fig. 3, cons allocates cells from the right end of
the free storage to the left, whereas rcons allocates cells
from the left to the right. The area containing cells al-
located by rcons will be called R-area. Note that lists in
R-area have the same structure as those in usual free
storage area, and where the lists reside is transparent to
LISP users.

Conventional LISP primitives, such as car, c¢dr and
cons, and garbage collector can be implemented by the
method, with little modification, described by Hansen.

1) v} 1= rcons[NIL; 1]

2) vy := reonslv; 2]

3) vy = rcons[vz; 3}

*

invisible cell
Y end of a list terminated with NIL
- used cells

Fig. 2 Rcons composed of cons and rplacd.

209

RCONS—>) ~— CONS
[i2s] § jalec]
T Fort
Vl Vz V3 W3 WZ W]

1) vo= reons{NIL; 1] wy = cons(C: NIL]

2) vy 1= rcons[vl; 2] wy 1= cons(B: Wl]

3) vy := reonslvy: 3} wy 1= conslAL wy

values of variables after step 3

v1=(123) w = (O
v2=(2 3 w2=(BC)
v3=(3) w3=(ABC)

Fig. 3 Growing direction of linear lists by cons and rcons.

Especially, after garbage collection, which is invoked
when the front ends of R-area and the usual area meet
each other, all cells previously in R-area are moved to
the usual area.

Fig. 4 shows an example of rcons[x; y), where there
are three cases depending on where the value of x points
to:

1) The value of x points to the front end of R-area.

2) The value of x points to the inside of R-area.

3) The value of x points to the usual area.
Although cases 2 and 3 require an introduction of an
invisible cell, the subsequent call on rcons will be case 1
and the invisible cell may be avoided.

4. Concluding Remarks
A new LISP primitive rcons is proposed, which can

be used to transform a certain pattern of recursively
defined functions into iterative ones.

R-area i /

(s O I W

g

Fig. 4 Implementation of rcons [x; y] with R-area.

210

Although rcons could be defined in terms of rplacd
and cons, it is advantageous in cdr-coding systems to
introduce rcons as a new primitive, which combines the
effects of cons and rplacd in such a way that no overhead
is incurred in space and time due to rplacd.

Our idea is to arrange for a primitive rcons to allocate
a cell in R-area, which grows in the direction from one
end of a free storage to the other from which cons
starts to allocate cells. Namely, R-area allows lists to
be linearly constructed from head to tail. (Without
R-area, lists could not be linearly constructed from head
to tail in a usual cdr-coding system. At garbage collec-
tion time, however, lists could be rearranged with time-
consuming linearization phase.)

Since most previous studies on recursion eliminations
have been concentrated on elimination of recursively
defined procedures [1], and little effort has been devoted
to systematically eliminate recursively defined functions,
whose resulting value is a data structure, such as linked
lists [3, 8], it is not yet clear whether other new primi-
tives will have more general applications in recursion
eliminations. However, several papers have appeared
on individual problems, such as non-recursive list
copying operations [6]. The individual problems were
tackled, case by case, with ingenuity including the use

Masayuki Suzukt, Kiyoshi ONo and Eiichi Goro

of data structure itself as a stack by modifying the car
and cdr parts of the existing data structure appropriately.
It will be interesting future studies to develop recursion
elimination techniques and to invent, at the same time,
new primitives which conform well to existing systems
or which suggest a new system architecture [4].

References

1. Bird, R. S. Notes on Recursion Elimination. Comm. ACM 20,
6 (June 1977), 434-439.

2. Bobrow, D. G. and Clark, D. W. Compact Encodings of List
Structure. ACM Trans. Programming Languages and Systems 1,
2 (Oct. 1979), 266-286.

3. Darlington, J. and Burstall, R. M. A System which Auto-
matically Improves Programs. Acta Informatica 6, (1976), 41-60.
4. Goto, E., Ida, T., Hiraki, K., Suzuki, M. and Inada, N.
FLATS, A Machine for Numerical, Symbolic and Associative
Computing. Proc. of the 6th Annual Symposium on Comp
Architecture, April 23-25, (1979), 102-110.

5. Hansen, W. L. Compact List Representation: Definition,
Garbage Collection, and System Implementation. Comm. ACM
12, 9 (Sept. 1969), 499-507.

6. Lee, K. P. A Linear Algorithm for Copying Binary Trees
Using Bounded Workspace. Comm. ACM 23, 3 (March 1980),
159-162.

7. McCarthy, J., et al. LISP 1.5 Programmer’s Manual. M.1.T.
Press, Cambridge, Mass., (1962).

8. Risch, T., REMREC—A Program for Automatic Recursion
Removal in LISP. Datalog. Report No. DLU 73/24, Uppsala,
Sweden (1973).

(Received April 3, 1981: revised July 19, 1981)

