LPS: A Rule-based, Schema-oriented
Knowledge Representation System

YUICHIRO ANZAL* YUICHI MITSUYA,*
SHINYA NAKAIMA* and SHon Ura*

A new knowledge representation system called LPS is presented. The global control structure of LPS is rule-
based, but the local representational structure is schema-oriented. The present version of LPS was designed to
increase the understandability of representation while keeping time efficiency reasonable. Pattern matching through
slot-networks and meta-actions from among the implemented facilities of LPS, are especially described in detail.

1. Introduction

Efficiency, understandability and flexibility of an arti-
ficial intelligence system depend largely on the design
of knowledge representation. It is just the reason why
many different kinds of representation schemes have
been presented so far: frames [1], production rules [2],
and semantic networks [3] are well-known examples.
Each of them is oriented towards some specific aspect
of knowledge pieces and their organizations. For
example, a production system is appropriate for knowl-
edge that can be decomposed into piecewise rules, and a
frame-based system properly represents interrelated,
structured knowledge.

That a system is competent for one aspect of knowl-
edge does not mean its adequateness for all aspects.
Squeezing all aspects into one representation often leads
to forfeiture of simple control structure, understand-
ability, or flexibility of representation, each of which is
relevant to any general-purpose knowledge representa-
tion system. This paper describes LPS, a knowledge
representation system designed based on this lesson:
programs and control of our system should be com-
rehensible and flexible enough from the user’s viewpoint,
while maintaining reasonable efficacy.

On one hand, LPS’s global control is carried out by
the rule-based recognize-act cycle. In this regard, the
global control structure is related to production system
architecture [4], especially OPS [5]. To avoid redundancy,
we do not repeat here what LPS and OPS commonly in-
clude, and suppose that OPS and general production
system architecture are familiar to the reader. On the
other hand, LPS’s basic representation inherits general
feature of frames. We also assume that the reader is
familiar with general frame systems [6]. Consequently,
what was originally in LPS is how the characteristics
of production systems and frame systems can be in-
tegrated into another comprehensible and flexible

*Department of Administration Engineering, Keio University,
3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223, Japan.

Journal of Information Processing, Vol. 4, No. 4, 1981

representation system. LPS has been applied by our
group to knowledge-based problem solving [7], natural
language understanding [8], and simulation of human
cognitive processes. But this paper is not concerned
with these applied topics, and concentrates on descrip-
tion of the original ideas embedded in the LPS system.

2. A Glimpse of LPS

Each piece of knowledge in LPS is represented usually
as a frame, or a schema, but avoids complexity in slots
by forbidding writing a procedure in a slot of a schema.
Instead, we notice that a procedure can be represented
as a production rule, i.e., a pair of the condition and
action parts, and each condition or action can be a
knowledge unit in a schema as exemplified below.

Fig. 1 shows simple examples of LPS schemata.
The first schema in Fig. 1 is one for the concept “marry.”
Its first element, MARRY, represents the schema-name,
whereas the atoms, ISA, AKINDOF, #OBJ1, #0BJ2,
#Cl, #C2 and ACT, are called slotnames. To each
slotname corresponds a list called the slotvalue except

l-a.
(MARRY 1SA (MOVEMENT)

AKINDOF (HUMAN,BEHAVIOR)
#oBul (11sA mMaN $M)
#oBJu2 (11sA woMAN $w)
#cl (Love $M $w)
#c2 (LOVE $w $M)
ACT (MARRY $M $W))

(TAROW 1SA (MAN)
Ace (22))

(HANAKO 1SA (WOMAN)
AGe (20))

Fig. 1 Example of LPS schemata (I) “MARRY”, “TAROW”
and “HANAKO”.

178

for ACT. ACT is allowed to have an arbitrary number
of slotvalues. The schema MARRY is interpreted as:
“marry” is a movement, is a kind of human behavior,
and if $M is a man, $M is a woman, $M loves §W,
and $W loves $M, then $M marries $W, where $M
and $W are variables. Thus, the schema includes the
declarative knowledge for categorization of “marry”
by ISA and AKINDOF, and also one piece of proce-
dural knowledge that if a man and a woman love each
other, then one marries the other. #OBJ1, #OBJ2,
#Cl and #C2 in the schema, i.e., the slotnames with
“#” at their heads, refer to conditions, and ACT is for
actions, of the procedure.

LPS allows at most one production rule in a schema
as illustrated in Fig. 1-a. The reader might understand
that a schema is basically a production rule possibly
with declarative attachment. So control structure for
production systems still works for LPS as explained
below. With this structure of representation, LPS is
able to represent declarative and procedural fragments
of knowledge homogeneously in one schema. As shown
in the following sections, this compactness of representa-
tion is not merely for grafting two different species of
knowledge. It yields modifiability of schemata, which
is one of the essential features of LPS.

Another restriction in LPS is put on its control
structure. To keep transparency of the computation
process, we wanted to limit the channel of pattern
matching for schemata to only one through working
memory. Under this restriction, LPS is incorporated with
some pattern matching facilities which work on the
schema representation of LPS.

For example, suppose that working memory con-
tains two elements, (TAROW WITH A DIAMOND
RING) and (HANAKO WITH FLOWERS), and we
have three schemata as shown in Fig. 1. The slotvalues,
(ISA MAN $M) and ({ISA WOMAN $W), in
schema MARRY in Fig. 1-a imply that $M matches
a working memory element which ISA MAN, and $W
matches one which ISA WOMAN. Here, $M and $W
can match (TAROW WITH A DIAMOND RING)
and (HANAKO WITH FLOWERS) respectively be-
cause the schemata TAROW and HANAKO, whose
names are the first elements of the two lists, in Figs. 1-b
and l-c are visible from MARRY through those first
elements of the lists, and those two schemata indicate
in them that TAROW ISA MAN, and HANAKO ISA
WOMAN. The use of !ISA is explained in more detail
in a later section.

Since LPS works through pattern matching via work-
ing memory as above, the problem is now how working
memory is updated. It is done in LPS by the recognize-
act cycle similar to OPS [5]. When the slotvalues with
the symbol # at the heads of their slotnames matched
working memory, the slotvalues of ACT are executed
one after another. If the currently executed slotvalue is
not a function, it is just deposited into working memory.
If it is, it is evaluated, and may modify working memory.

Yuichiro ANzaI, Yuichi Mrtsuya, Shinya NAkAJMA and Shoji Ura

A special feature of LPS is that those functions
include meta-actions that modify a schema. Part of a
schema is modifiable by meta-actions such as ADD-
SLOT-VALUE, DELETE-SLOT and so on. It con-
tributes substantially to flexibility and learnability of
the LPS system. The details of meta-actions are expli-
cated later.

Thus in short, LPS is a schema-oriented, but rule-
based knowledge representaion system. It is schema-
oriented because each chunk of knowledge is represented
as a schema, and rule-based since schemata are driven
similarly to productions in a production system by
executing actions embedded in the schemata.

As a programming system, LPS can be used interac-
tively via the LPS Monitor. The I/O routine, ANALYZE
routine for constructing internal representation,
EXECUTE routine for matching and recognize-act
cycling, and the LPS Editor comprise the lower-level
modules of the LPS system, and are all called from
the Monitor. Fig. 2 illustrates the relations among these
modules and the Monitor. The system is all written in
Interlisp, and the first version is presently running on
DEC-20 under the TOPS-20 operating system.

3. LPS Representation

As exemplified in Fig. 1, an LPS schema is a list of the
schema-name and the associated body, that is, a set of
slots: a slot is defined as a pair of a slotname and a
slotvalue (or slotvalues), and represents a knowledge
fragment in a chunk of knowledge. For convenience,
a slot is usually referred to by its slotname.

Part of the BNF description of LPS programs is
shown in Table 1. As defined in Table 1, a slot is either
a condition slot (c-slot), attribute slot (arz-slot), or action
slot (act-slot). For example, in Fig. 1, the slots ISA,
AKINDOF and AGE are att-slots, # OBJ1, #OBJ2,
#Cl and #C2 are c-slots, and ACT is the act-slot. ACT
is a reserved slotname used only for the act-slot. As
mentioned before, an LPS schema has at most one
act-slot whose slotname is ACT. A c-slot is identified by
the symbol # at the head of its slotname. Any slotname
that is not ACT, and not headed by “#”, corresponds
to an att-slot.

If for a schema, all the c-slotvalues were true, then the
act-slotvalues may be executed from left to right. To
define the terms, true and executed, we need to explain
{c-slotvalue) and <act-slotvalue). First, a c-slotvalue is

LPS Mon1Tor
\

AN
ANALYZE ROUT!NEJ EXECUTE Rounnz]

—————LPS INTERPRETER———‘

Fig. 2 Organization of LPS system.

lI/O Rou-rmsl IED]TOR,

INTERLISP
EprTor

LPS: A Rule-Based, Schema-Oriented Knowledge Representation System

Table 1 Partial description of LPS program syntax.

¢LPS program) ::={working memory>{schema)t

(schema) :: =({schema-name){body))

{schema-name) ::=any literal atom

{body) ::={c-slot)|{att-slot)|{{act-slot)| (body)*

{c-slot) :: ={c-slotname){c-slotvalue)

{c-slotname) ::=any literal atom headed by #

{c-slotvalue) :: ={simple pattern)|{function)|{ ABS-pattern)|

(IFEXIST-pattern)

(att-slot) :: ={att-slotname) {att-slotvalue)

(att-slotname) ::=any literal atom not headed by #, and except
ACT

{att-soltvalue)::=any list

(act-slot) :: ={act-slotname){act-slotvalue)*

{act-slotname) :: =ACT

{act-slotvalue) : : =act-pattern)|{function)

either a simple pattern, a function, an ABS-pattern, or
an IFEXIST-pattern. A simple pattern is a list, and is
true as a c-slotvalue if it matched an element in working
memory. An ABS-pattern, defined as a list (*ABS
{simple pattern)), is true as a c-slotvalue if there was
no element in working memory that matched the
argument {simple pattern). A function is true as a
c-slotvalue if it was evaluated not to be nil. That is, a
function, if written in a c-slot, is regarded as a predicate
evaluated to be nil or not nil. It should be noted that
the name of any function in an LPS program must
always put “*” at its head to be distinguished from
other expressions. An IFEXIST-pattern, written in the
form (*IFEXIST {simple pattern)), is always true as a
c-slotvalue. If the (simple pattern) matched working
memory, variables in the pattern are bound and those
bindings are carried to the same variables in the schema.
But if the pattern did not match, variables in it are bound
to newly generated default values, and those bindings by
defaults are transmitted to the same variables in the
schema, so derived the name IFEXIST. The system has
some functions for handling default values generated by
processing IFEXIST’s. An example of such functions is
shown in Section 5.

Second, an act-slotvalue is either an act-pattern or a
Sfunction. LPS allows any LISP function to be written in
the act-slot. An act-slotvalue must be a list, but its first
element can either be or not be the name of a function.
If the first element is a function name, it is called a
function, and if not, it is called an act-pattern. Execution
of an act-pattern as an act-slotvalue results in deposition
of it into working memory after functions included in
it are evaluated. A function is said to be executed as
act-slotvalue when it is evaluated. Whether its returned
value is deposited into working memory or not depends
on the user’s definition: the user can predetermine
which functions should deposit returned values.

To an element in working memory, which is restricted
to be a list in the present version, is attached a non-
negative integer called the time index. It is attached to
the element when the element is deposited into working
memory, and indicates when the element is deposited.

179

It increases by one unit every time an element is de-
posited.

Let us provide an example in Fig. 3. Suppose that the
current working memory looks like a list (2 HUMAN
TAROW) (1 CANNIBAL PUFFIE)), where 1 and 2
denote time indices and are neglected in pattern match-
ing. Note that working memory is a list of lists kept in
the decreasing order of the time index, and that the
most recently deposited element is headed by the highest
time index.

The schema CANNIBAL in Fig. 3 includes eight
slots. Among them, four (#PATI, #PAT2, # ABSENT,
#PRED) are c-slots, one (ACT) is the act-slot, and the
remaining three (ISA, REPRESENT, PROPERTY) are
att-slots. '

As can be inferred from Fig. 3, att-slots are usually
used to represent knowledge pieces declaratively:
CANNIBAL ISA race, represents CANNIBALISM,
and so on.

On the other hand, the act-slot and c-slots are con-
cerned with a procedure that if c-slots were all true, then
the act-slotvalues are executed. As working memory
contains (HUMAN TAROW), the c-slotvalue (HUMAN
$HUM), which is a simple pattern, of the slot #PATI1
matches it, and hence SHUM can be bound to TAROW.
Similarly, the c-slotvalues (CANNIBAL $CAN) matches
(CANNIBAL PUFFIE) in working memory, and $SCAN
may be bound to PUFFIE. The c-slotvalue of
#ABSENT is an ABS-pattern. Its value is true here
because there is no element in working memory that
matches (EAT-ENOUGH $CAN) when $CAN was
bound to PUFFIE. The slotvalue of #PRED is a
predicate, where *NOT and *EQUAL correspond to
LISP functions, NOT and EQUAL, respectively. This
predicate evaluates to true unless the binding of SCAN
is equal to the binding of §HUM, in which case one may
keep away from eating his or her own flesh. Now as the
case bindings of $CAN and $SHUM are PUFFIE and
TAROW, the c-slotvalue (*NOT (*EQUAL $CAN
$HUM)) returns true.

Thus we saw that all the c-slots of CANNIBAL were
true when $CAN and $HUM were bound to PUFFIE
and TAROW. The act-slotvalues can be executed after
these variable bindings are carried over to the act-slot.
After this, the act-slot looks like:

ACT (EAT PUFFIE TAROW)

(canNiBAL 1SA (RACE)
REPRESENT (CANNTBALISM)
PROPERTY (EAT HUMAN FLESH)
#patl (CANNIBAL $CAN)
#pAT2 (HUMAN $HUM)
#ABSENT (#ABS (EAT-ENOUGH $CAN))
#PRED (*NOT (#EQUAL $HuM $caN))
AcT (AT $cAN SHUM)
(#DELETE (HUMAN $HUM)))
Fig. 3 Example of LPS schemata (II) “CANNIBAL”.

180

(*DELETE (HUMAN TAROW)).

First, (EAT PUFFIE TAROW) is executed. As it is
an act-pattern, it is deposited into working memory
after the time index, 3, is attached to it. Next, *DELETE
(HUMAN TAROW)) is executed. DELETE is a system-
defined function which deletes its argument from work-
ing memory. Hence, when this act-slotvalue was exe-
cuted, working memory must be:

((3 EAT PUFFIE TAROW) (1 CANNIBAL PUFFIE))

Before leaving this section, note that usually more
than one schema matches working memory. To deter-
mine a schema to be executed, LPS includes a set of
conflict resolution rules in the EXECUTE routine.
Presently seven rules are incorporated. As they are
similar to the rules implemented in OPS [5], we only
list the LPS rules in the order of priority: (1) refractory
inhibition for c-slots, (2) recency by time indices for
c-slots, (3) the number of simple patterns in c-slots, (4)
the total number of ABS-patterns, IFEXIST-patterns
and fuctions in c-slots, (5) the number of constants in
simple patterns in c-slots, (6) recency by ages for con-
flicting schemata, and (7) arbitrary tie-breaking. Each
schema has an index called age which refers to the time
when the schema was created.

Though the above description gave the basic charac-
teristics of the LPS representation, it is far from com-
plete. LPS is provided with some special pattern match-
ing mechanisms, and actions that modify a program it-
self. We explain these features in the following sections.

4. Slot-net Patterns and Slot-net Variables

The global structure of LPS, i.e., the rule-based
recognize-act cycle, is appropriate for knowledge that
can be decomposed into piecewise schemata. However,
its critical deficit is its difficulty in representing structured
knowledge often clearly describable as schemata. For
instance, consider an LPS schema as in Fig. 4.

Suppose that, as we have discussed with Fig. 1,
working memory contains lists (TAROW WITH A
DIAMOND RING) and (HANAKO WITH FLOW-
ERS). These lists do not suffice to fire the schema
MARRY in Fig. 4 if lists like (MAN TAROW) and
(WOMAN HANAKO) are lacking from working
memory.

To keep somewhat “time-invariant” information such

(MARRY 1SA (MOVEMENT)
AKINDOF (HUMAN,BEHAVIOR)
#cl (Love $m $w)
#c2 (LOVE $w $M)
#c3 (MaN $m)
#cd (woMaN $w)
ACT (MARRY $M $w))

Fig. 4 Example of LPS schema without slot-net patterns or
variables.

Yuichiro ANzAl, Yuichi MITsuYA, Shinya NAKAJIMA and Shoji Ura

as (MAN TAROW) and (WOMAN HANAKO)
constantly in working memory is not only awkward for
recognize-act cycle computation, but also cumbersome
for understanding the program structure: it is more
readable if the schema TAROW itself includes the
declarative information that Tarow is a man, also for the
schema HANAKO. Slot-net patterns and slot-net varia-
bles are introduced to avoid such difficulty.

A slot-network is a network of slotvalues connected
by a particular slotname, and used for representing
structured knowledge in the LPS database. For example,
a point is a part of a line segment, a line segment is a
part of a triangle, and a triangle is a part of a tetrahedron.
Tarow is a handsome boy, a handsome boy is a boy,
a boy is a man, and a man is a human. These hierarchical
relations can be represented in schemata by APARTOF-
and ISA-networks, respectively. For instance, if we
have five schemata in Fig. 5, then the ISA-network
embedded in them looks as shown in Fig. 6.

A merit of the LPS representation is that the user can
embed slot-networks explicitly in a program, while
keeping the global recognize-act cycle structure. But
this merit should be buttressed by some procedure to
use the embedded networks. It is explicitly performed in
LPS by what we call slot-net patterns and slot-net
variables that restrict ranges of pattern matching

(CANNIBAL 1sA (RACE)
REPRESENT (CANNIBALISM)
#pPAT1 ($AKINDOF-CANNIBAL-CAN)
#PAT2 ($1SA-HUMAN-HUM)
#pRep (*NOT (*EQUAL $CAN $HUM))
AcT (EAT $CAN $HUM)
(*DELETE ($HUM))

(PUFFIE 1A (MAN)
AKINDOF (CANNIBAL))

(TAROW ISA (MAN)
AGe (22))

(MAN 1SA (HUMAN))
(JouN 1sA (DOG)

aGe (7))
Fig. 5 Example of LPS schemata (III).

Fig. 6 ISA slot-network for schemata in Fig. 5.

LPS: A Rule-Based, Schema-Oriented Knowledge Representation System

through slot-networks embedded.

A slot-net pattern is a kind of simple pattern, and de-
noted basically as (!(slotname){slotvalue){variable}).
(Slotname) is a slotname which defines the type of a
slot-network ; one such as ISA in Fig. 6. When a slot-net
pattern is used, any list in working memory matches
the slot-net pattern if the node named (slotvalue) is
accessible in the related slot-network from the first
element of the list. For instance, the list (HANAKO
WITH FLOWERS) matches (!ISA WOMAN $W)
because the schema HANAKO has the slot ISA and
the value (WOMAN). Also (TAROW WITH A DIA-
MOND RING) matches ({ISA HUMAN $X) if the ISA-
network in Fig. 6 was used: it is equivalent to acces-
sibility of the node HUMAN from TAROW in the
ISA-network. (Variable) in a slot-net pattern is the
variable to which a matched working memory element
is to be bound. The matched information, i.e., (TAROW
WITH A DIAMOND RING) in the last example, is
substituted into the (variable) $X, and used anywhere
else in the schema. But {variable) can be omitted if no
substitution is necessary.

As matching of a slot-net pattern is concerned with
only the first element of a list, but substitution into
{variable) is for the whole list, a slot-net pattern is
allowed to match a list of any length. On the other hand,
a slot-net variable, which is regarded as a kind of
variable, is allowed to match only an atom. It is denoted
basically as ${slotname)-{slotvalue)-{variable). Similar
to slot-net patterns, (slotname) defines the type of a
slot-network on which matching is to be performed. A
slot-net variable matches any atom in a working mem-
ory element from which the node {slotvalue) is acces-
sible in the slot-network specified by (slotname).
{Variable) is the variable to which a matched atom is
to be bound, and can be omitted when unnecessary.
Let us provide a brief example of slot-net variables
below.

Suppose that we have five schemata as shown in Fig.
5. Also assume that the current working memory is a

list:

(3 JOHN) (2 TAROW) (1 PUFFIE)),

where 3, 2, and 1 are time indices. The ISA network
embedded across those schemata is illustrated in Fig. 6.

Variables SAKINDOF-CANNIBAL-CAN and $ISA-
HUMAN-HUM in Fig. 4 are slot-net variables. The
variable SISA-HUMAN-HUM is allowed to match an
atom from which the node HUMAN is reachable in the
ISA network in Fig. 6. As shown in Fig. 6, the node
HUMAN can not be reached from JOHN, but can be
from TAROW and PUFFIE. Thus the c-slotvalue
(SISA-HUMAN-HUM) of #PATI can match (2
TAROW) of (1 PUFFIE) in working memory. Simi-
larly, SAKINDOF-CANNIBAL-CAN can match (1
PUFFIE) because PUFFIE is AKINDOF cannibal as
shown in Fig. 5. Accordingly, as all the c-slots are true
in the schema CANNIBAL, its act-slot can be executed

181

after the bindings are passed to $HUM and $CAN in
the act-slot. After the execution, working memory
looks like:

((4 EAT PUFFIE TAROW) (3 JOHN) (1 PUFFIE)).

As the above example suggests, the slot-net patterns
and variables give some semantic restrictions to bindings,
using declarative knowledge embedded in LPS schemata.

The above two kinds of semantically limited matching
schemes, i.e., slot-net patterns and slot-net variables,
are not alternatives, but each can be used in any part of
a program where the user considers relevant. As men-
tioned above, these schemes facilitate computation of
the LPS recognize-act cycle, and understanding of
program structure.

Notice that both slot-net patterns and variables are
effective only in pattern matching through working
memory, and they can not be used in direct matching
between schemata as in usual frame-based systems.
Rather, woking memory elements are often just tags
of associated schemata, and slot-net patterns and
variables can be regarded as efficient communicating
devices for looking into the details of chunks of knowl-
edge through working memory.

5. Meta-actions

While slot-networks are essential for representing
structured knowledge in the rule-based control structure,
it is another fundamental characteristic of the LPS
representation that schemata can be generated, deleted
and modified easily by actions within the schemata.
Thus, LPS retains flexibility and potential learnability
of representation. However, though this characteristic
was derived from the piecewise schema representation
actually inherited from production system architecture,
maodification of part of a schema is made much easier
in LPS by utilizing slotnames. Usual production systems
have difficulty in indicating one specific condition to be
modified because no name or tag is given to the con-
dition. LPS, on the other hand, is able to add, delete
and modify one or more slots in a schema. We call that
kind of actions, “meta-actions™ since they are executed
on the representation itself.

Presently, LPS is equipped with around 20 meta-ac-
tions mostly developed along our research on natural
language understanding [8). Table 2 shows the list of
principal meta-actions often useful.

Meta-actions of LPS can be classified into the fol-
lowing five classes: (a) adding new information to the
current representation, (b) deleting information from the
current representation, (c) properly modifying the
current representation, (d) extracting information from
the current representation, and (e) miscellaneous.

For example, among 11 meta-actions in Table 2,
BUILD, ADD-SLOT-VALUE and RECOVER are
in the class (a), i.e., they add some new information to
the current program. BUILD builds a new schema,

182

Table 2 Typical LPS meta-actions.

(*BUILD ({schema-name){c-list){act-list)<att-list))

(*DELETE-SLOT (slotname){schema-name))

(*ADD-SLOT-VALUE (slotname){slotvalue)

{schema-name))

4. (*DELETE-SLOT-VALUE (slotname){slotvalue)

{schema-name))

(*CHANGE-SLOT-VALUE {slotname){slotvalue)

{schema-name))

(*SUBSTITUTE (oldvalue){newvalue){schema-name})

(XTRELEMENT (slotname){location){schema-name}))

(*XTRSLOT (slotname){schema-name))

(*FIND-DEF-VALUE (slotname){schema-name))

(*ERASE (schema-name-list))

. (*RECOVER (schema-name-list})

where

{c-list) :: =(<{c-slot)*) ! c-slotnames can be omitted.

{act-list) :: =({act-slotvalue)*)

(att-list) : : =({att-slot) =) ! att-slotnames can be omitted.

{slotname) :: = {c-slotname)|{att-slotname|{act-slotname)

(slotvalue) : : = {c-slotvalue)|{att-slotvalue|(act-slotvalue)

{oldvalue)::=any S-experession

{newvalue) ::=any S-expression

Clocation) ::=a list of positive integers that indicate the
nested position of an S-expression in the
designated slot.

{schema-name-list) : : =({schema-name)*).

When a slotname in the {c-list) or (att-list) was omitted, the

system automatically generates a new symbol for the slotname.

bl S

he

SSomNa

——

ADD-SLOT-VALUE adds information to a slot, or
creates a slot, in a schema, and RECOVER recovers a
once erased schema.

The class (b) includes DELETE-SLOT, DELETE-
SLOT-VALUE and ERASE in Table 2. As the names
suggest, DELETE-SLOT deletes a specified slot from a
schema, DELETE-SLOT-VALUE deletes information
from a slot in a schema, and ERASE erases a schema
from the body of the program. Actually, ERASE and
RECOVER are inverse operations.

CHANGE-SLOT-VALUE and SUBSTITUTE in
Table 2 belong to (c). The slotvalue of a slot in a schema
can be changed to a new slotvalue by using CHANGE-
SLOT-VALUE. SUBSTITUTE substitutes a new ex-
pression into a specified old expression in a schema.

The class (d) contains XTRELEMENT, XTRSLOT
and FIND-DEF-VALUE among meta-actions in Table
2. XTRELEMENT returns the expression at a specifed
location in a schema. Taking the schema CANNIBAL
in Fig. 3 as an example, *XTRELEMENT # ABSENT
(2 1) CANNIBAL) returns EAT-ENOUGH, for the
atom EAT-ENOUGH is located at the first position in
the second element of the slotvalue for # ABSENT,
which is (*ABS (EAT-ENOUGH $CAN)). FIND-
DEF-VALUE finds all default values in a schema, and
returns the list of them. The user can use this kind of
meta-actions for dealing with default values to program
himself a default handling mechanism. Those meta-
actions are able to distinguish default values from other
atoms. Notice that XTRELEMENT and XTRSLOT
are used not for pattern matching, but only for looking

Yuichiro ANzal, Yuichi MrTsuya, Shinya NAkAiiMa and Shoji Ura

at the inside of a schema without getting through work-
ing memory. It is still true that patterns can be matched
only through working memory.

We have found from experience that most of what
the user wants to do can be written not by using complex
user-defined LISP functions, but only by combining
system-defined functions and meta-actions. Although
the user is allowed to incorporate arbitrary user-
defined LISP functions in LPS programs, unlimited use
of them sometimes leads to blurred and confused
representation. It is safer, and usually enough, to use
only functions served by the system. We illustrate
examples of meta-actions later in Section 7.

6. LPS Monitor

An LPS program is initially compiled into internal
representation before execution. It is preferable that
the user be able to use the system with no inconvenience
even if he knows nothing about the internal structure of
LPS. Also one of the difficulties in programming LPS
programs is that the user is sometimes hard to foresee
which schema will be executed and in what order. For
subjugating it, an interactive facility is helpful. The
LPS Monitor was designed to satisfy these requirements.

Once the user gets into the Monitor mode, he can
access interactively to any of the modules as shown
earlier in Fig. 2. It may be sufficient here to briefly
describe only the fundamental features of the Monitor:
(1) The user can input schemata and working memory

elements for his program by answering questions
asked by the Monitor, and does not need to be
conscious about the internal representation.

(2) The user can use the LPS Editor interactively in
the Monitor. The Editor is essentially based on the
Interlisp Editor, but specially tailored to LPS
programs. The user can reach a desired original,
modified or generated schema, the initial or current
working memory, or a user-defined function, by
answering questions asked by the Editor.

(3) The user can specify the number of times for rec-
ognize-act cycling. For example, the Monitor
command “XQT 4” executes cycling four times,
and then the run pauses. This facility makes it
easier for the user to do interactive monitoring and
execution.

(4) The user can suspend and logout while executing
an LPS program, and login and execute from that
intermediate state.

(5) The user can easily handle the Monitor with
schemata generated or modified during the run.
There is a separate area for storing these schemata,
and it depends on the user whether to save, or delete
them.

7. How an LPS Program Runs: An Example

This section provides in a casual manner an illustra-

LPS: A Rule-Based, Schema-Oriented Knowledge Representation System

tive example of how a program runs. The cover story
itself is only for the reader’s ease of comprehension,
and not essential for the purpose of this section. Al-
though the example is not complex, it includes most of

Initial set of schemata

{NARRY 1SA (NMOVENENT)
AKINDOF
(HUNAN.BEHAVIOR)
[[9]
{LOVE $ISA-NAN-N $ISA-WORAN-W)
2

(LOVE $U $H)
103
($H4)

(12}
su)

[]
($ABS (NARRY $i $U))
ACT

{SPRINT (BUN NAN $H MARRIES WOHAN $U #i#))
(sCHANGE-SLOT-VALUE ISA $M (HUSBAND))
(sCHANGE-SLOT-VALUE ISA $UW (UIFE))

(NARRY $H $U)

{*DELETE $C1)

{*DELETE $C2)

($DELETE $C3)

(sDELETE 4C4))

(MARRIED-COUPLE #C1 (MARRY $MAN SUONAN)
(sABS (HARRIEB-COUPLE $HAN $UDHAN))
(sADD-SLOT-VALUE HASWIFE $HAN (SUOHAN))
(¢ADD-5LOT-VALUE HASHUSBAND $UCHAN ($HAN))
{MARRIED-COUPLE SHAN SUONAN)
(#DELETE $C1))
(EAT ACt (11SA HUNAN $HAN)
{1AKINDOF CANNIBAL $CAN)
CSPRINT (HEN $SHAN WAS EATEN BY CANNIBAL $CAN H#W))
(EAT SCAN SHAN)
(*DELETE $C1)
(sHALT))
(JIROU ISA (HAN))
(TARGW I5A (HANDSOME.BOY))
({PUFFIE AKINDOF (UNKNOUN.TRIBE)
(AT UNKNOUN. ISLAND)
12
{*ABS (PUFFIE))
ACT
(PUFFIE))
(UNKNOUN, TRIBE AKINDOF {CANNIBAL))
(HANDSONE.BOY ISA (MAN))
{BEAUTIFUL.LADY ISA (WOMAN))
(NAN ISA (HUNAN)
($1SA-HAN-K)

(+DELETE ($N))
{HAN $H))

(HANAKO ISA (BEAUTIFUL.LABY))

Initial working memory

({4 LOVE TAROW HANAKO) (3 LOVE HANAKG TAROU) (A AT UNKNOUN.ISLAND)
€3 JIROU) (2 TAROW) (1 HANAKO))

Fig. 7 Example LPS program: initial working memory and set
of schemata.

183

the features explained in the preceding sections. Fig. 7
shows the set of schemata and the initial working
memory that constitute our example LPS program.

The contents of the initial working memory can be
paraphrased as follows: (once upon a time,) there were
two men, Tarow and Jirow, and a woman, Hanako,
at what we call Unknown Island (located in some un-
known area), and Tarow and Hanako loved each other.
The 11 schemata in Fig. 7 are the only information that
describes and controls their world. The execution of the
program then simulates what happened to those three
people.

Let us follow the simulation output, which is listed in
Fig. 8. As Tarow and Hanako loved each other, first
they married at Unknown Island. The execution of the
schema MARRY shows this. MARRY includes two
meta-actions in the act-slot, and the schemata, TAROW
and HANAKO, were modified by them: Tarow became
a husband and Hanako a wife. MARRY then deleted
all the information concerned with love and the names
of the individuals involved in it. This is done by execut-
ing four actions such as (*DELETE $C1) at the bottom
of the act-slot. As mentioned in Section 3, DELETE

NNTR>XQT
3>> LET’S START ANALYZING YOUR PROGRAM
>>> READY FOR EXECUTION !

#3FIRE sNARRY
(808 NAN TAROW NARRIES WOMAN HANAKO Ru#)

(#3393 SCHENA TAROU CHANGED #¥3s33)

{TAROU ISA (HUSBAND))

{33383 SCHENA HANAKO CHANGED s3e#s)

(HANAKO ISA (WIFE))
((7 MARRY TAROW HANAKO) (4 AT UNKNOWN.ISLAND) (3 JIROU))
#sF1RE sMARRIED-COUPLE
(88393 SCHENA TAROU CHANGED 3e233)
(TAROU ISA (HUSBAND)
HASUIFE
{HANAKO))
(#8303 SCHEHA HANAKO CHANGED »33#)
CHANAKO 1SA (VIFE)
HASHUSBAND
(TAROW))
{(8 HARRIED-COUPLE TAROW HANAKO) (4 AT UNKNOUN.ISLAND) (3 JIROW))
*sFIRE :PUFFIE

({9 PUFFIE) (8 KARRIED-COUPLE TAROU HANAKD) (4 AT UNKNOWN.ISLAND)
(3 JIROW))

»oFIRE EAT
(##% (JIROW) UAS EATEN BY CANNIBAL (PUFFIE) #3M)

({10 EAT (PUFFIE) (JIROW)) (9 PUFFIE) (B MARRIED-COUPLE TAROU HANAKO)
(4 AT UNKNOUN.ISLAND))

s8¢ LPS HALT ! 29833

HNTR>STOP
* LABELLED PRODUCTION SYSTEM VERSION-1 SEE YOU AGAIN 1%

Fig. 8 Computational output for program shown in Fig. 7.

184

deletes its argument from working memory. One
simplified notation, $C1 in *DELETE $C1) for example,
was introduced in description of act-slots. That is, if
#C is a slotname in a schema, any $C in an act-slotvalue
of that schema is substituted by the slotvalue of #C.
(This example is for a c-slotname, but the notation is
applied to any type of slotnames. # is deleted in the
case of c-slotnames.) Thus, (*DELETE $C!), when
executed, deletes from working memory (LOVE TAROW
HANAKO), the bound slotvalue for the slot #Cl.

Then, Tarow and Hanako became a married couple,
which was simulated by the execution of MARRIED-
COUPLE. This schema also includes meta-actions,
which modified TAROW and HANAKO further.

At Unknown Island, there lived a cannibal named
Puffie. He popped out to the world when the schema
PUFFIE was executed. This corresponds to deposition
of the list (PUFFIE) in the ACT slot of the schema
PUFFIE into working memory. As implied in the struc-
ture of the schema, it can be executed if no particular
event, e.g., a love affair, was going on at Unknown
Island. Lastly, as Puffie and a single man, Jirow, were
at Unknown Island at the same time, Jirow was eaten
by Puffie. It was simulated by executing the schema
EAT. After EAT was executed, Jirow disappeared from
the world, and Puffie and the married couple lived to-
gether on the island.

8. Discussion

Pursuance of efficiency, understandability and flexi-
bility at the same time is not an easy task. There seems
to be no resolution at least currently to this problem:
the three criteria are conflicting each other, and a design
of an artificial intelligence system involves trade-offs
among them. Our LPS system pursues reasonable ef-
ficiency, understandability and flexibility as a general-
purpose knowledge representation system. This section
provides a brief discussion on evaluation of LPS from
these three dimensions.

Efficiency. Time efficiency of LPS is kept reasonable
by adopting discrimination nets as internal representa-
tion, though computation time depends especially on
complexity of functions in c-slots of schemata. One
recognize-act cycle averages about 0.5 sec for the current
Interlisp version. We have kept time efficiency reasonable
by sacrificing a bit of space efficiency. It will be on the
agenda for a future version to increase space efficiency
while keeping other merits.

Understandability. As emphasized in this paper,
LPS restricts pattern matching to be only through the
narrow channel of working memory visible to the user.
Also every detail of knowledge is represented explicitly
and homogeneously in a simple form of schemata. The
only invisible part is conflict resolution in the recognize-
act cycle. No global variable or stack visible from the
user is involved except those in working memory. Thus,
LPS programs and computation processes are trans-

Yuichiro ANzA1, Yuichi MiTsuya, Shinya NAkAJIMA and Shoji UrRA

parent enough even for a naive user.

Flexibility. Any knowledge base in a knowledge
representation system must be well prepared for fre-
quent automatic or hand modification because any
kind of knowledge is exposed to changes of the environ-
ment, and to adapt to the change, maintenance of the
knowledge base is frequently needed. Confronted with
needs for modification, it is far better that knowledge
can be altered within the representation system itself.
In this sense, LPS is flexible enough as it can modify
itself by using meta-actions. A concept close to flexibility
is learnability. A system is highly learnable if a new
piece of knowledge can readily be assimilated into an
existing internal representation. LPS, as well as other
rule-based systems, has potential learnability in the
sense that it can add a new schema to an existing set of
schemata. But LPS’s potential in learning is higher than
ordinary rule-based systems, since LPS is able to access
and modify more detailed part of a schema than merely
a whole rule.

9. Conclusion

One of the hopes of researchers in artificial intelligence
and cognitive science is to have a knowledge representa-
tion scheme that is as flexible as the human cognitive
system. In this paper we presented the new representa-
tion system LPS, motivated basically by this hope. The
overall control structure of LPS is rule-based, but the
local representational structure is schema-oriented.
The design philosophy was to increase understandability
and flexibility at the same time, while keeping efficiency
reasonable. Though this paper addresses only what LPS
is, LPS has been successfully applied to two different
areas; knowledge-based problem solving [7] and natural
language understanding [8]. Although the high flexibility
of the human cognitive system is as yet unattainable for
the present, our results advanced the research at least
one step further towards symbolic realization of systems
as such.

Acknowledgement

This work was supported by the Grant-in-Aid of the
Ministry of Education No. 446194, and also partly by
the Esso Financial Aid for Interdisciplinary Reserch.

References

1, Bobrow, D. G. and Winograd, T. An Overview of KRL, a
Knowledge Representaion Language. Cognitive Science, 1, (1977),
3-46.

2. Davis, R. Buchanan, B. G. and Shortliffe, E. H. Production
Rules as a Representation for a Knowledge-based Consultation
Program, Artificial Intelligence, 8, (1977), 15-45.

3. Woods, W. A. What’s In a Link: Foundations for Semantic
Networks. In D. G. Bobrow and A. Collins (eds.), Representation
and Understanding, New York, N.Y.: Academic Press, (1975),
pp. 35-82.

4. Waterman, D. A. and Hayes-Roth, F. (eds.) Pattern-directed
Inference Systems. New York, N.Y.: Academic Press. (1978).

5. Forgy, C. and McDermott, J. The OPS4 Reference Manual.

LPS: A Rule-Based, Schema-Oriented Knowledge Representation System

Computer Science Department, Carnegie-Mellon University,
(1979).

6. Minsky, M. A Framework for Representing Knowledge. In
P. H. Winston (ed.), The Psychology of Computer Vision, New
York, N.Y.: McGraw-Hill, (1975), pp. 211-277.

7. Anzai, Y., Ishibashi, N., Mitsuya, Y. and Ura, S. Knowledge-
based Problem Solving by a Labelled Production System. Pro-

185

ceedings of the Gth International Joint Conference on Artificial
Intelligence, (1979), 22-24.

8. Mitsuya, Y. Design and Implementaion of a Japanese
Language Understanding System. Unpublished MS Thesis,
Administration Engineering Department, Keio University, (1980).

(Received June 18, 1980: revised July 20, 1981)

