Some Poised Lacunary Interpolation Polynomials

CHISATO SUZUKI*

An interpolation similar to the (0, 2)-polynomial is investigated. This interpolation is defined by a polynomial
of degree at most k + 1 whose value is prescribed at two end-points, x,, and x together with its second deriva-
tives at k points, Xz, X2, - *, X These points are arbitrary real numbers ordered as

—le,.<xu< < xn< 1.

In the present paper, such interpolation for any integer k >2 is constructed in an explicit form and the uniform
xonvergence of the interpolation is discussed for some classes of functions.

Specifically, two convergence theorems are obtained when both end-points, x, and x,,- are —1 and 1, respec-
tively. Namely, one theorem gives a sufficient condition under which the interpolation for every fe C¥{—1,1]
converges uniformly to f in the interval as the number of interpolation points increases infinitely. In the other
theorem, another sufficient condition is also given. In particular, this condition is useful in the case where in-
terpolation points consist of zeroes of the polynomial of the form,

(x? —1)px - 2(x),
where p,_, is the (k—2)-nd orthogonal polynomial over the open interval (—1, 1). Here, a class of sufficiently

smooth function is assumed.

A computational algorithm for the interpolation polynomial is also constructed.

1. Introduction

Let k and n be positive integers and E,,=(e;), (i=
1,2 -,k and j=0, 1, -+, n—1), be a matrix where
e;=0or 1 and

™M=

n—1
Y e;=n.
1 /=0

i

Let {x,}%_, be arbitrary real numbers ordered as,
A = 12X, <xy <+ <xy =1L

These are points of interpolation and A4 is an infinite
triangular matrix as k=1, 2, - - -.

The general problem of interpolation by means of a
polynomial can be described as follows; When a matrix
E,, is specified, find a polynomial p(x) of degree at most
n—1 which satisfies,

P(j)(xik)=y{ , for (irj)eekE {(i’j) €= 1}’ (1~1)
for given interpolation points {x;}%.,, where yj, are
arbitrary real numbers prescribed. In this problem, for
every choice of the real numbers {x;}}., and for every
choice of {y}: (i, /) € e}, if there exists a unique polyno-
mial p(x) of degree at most n—1 satisfying conditions
(1.1), then the problem is said to be poised. On the other
hand, if the problem has a unique polynomial solution
for only certain choice of interpolation points, then it
is said to be conditionally poised. We shall call E,, the
incidence matrix of the problem.

In 1955, Surdnyi and Turdn [l] investigated an
interesting problem, the so-called (0, 2)-interpolation
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problem, where the incidence matrix Ey,=(e;), (i=1,
2, -+, kand j=0, 1, - -+, 2k—1), is specified by e;;=1
for i=1, 2, -+, k and j=0, 2 and otherwise e;;=0.
Their problem is not poised, but is conditionally poised
[2]-[4]. Subsequently, Baldzs and Turdn [5] dealt with
the uniform convergence of (0, 2)-interpolation over
the very special matrix of interpolation points in which
each element of its k-th row consists of zeroes of poly-
nomial,

(= i (), (1.2
where p,_, is the (k—1)-st Legendre polynomial with
P-1(D=1

In the present paper, an interpolation problem having
the following incidence matrix is investigated; E,, =(e;)),
i=1,2,---,k and j=0,1, ---,k+1, where e =1,
ero=€30="""=¢._1,0=0, go=1, e;;=1 for all i and
otherwise e;;=0. This problem is similar to the (0, 2)-
interpolation problem. However, there is an essential
difference between the two problems. That is, the (0, 2)-
problem is not poised. On the other hand, our problem
is poised although because it is a lacunary interpolation.
In fact, our E,, can be decomposed into the horizontal
sum of two incidence matrices of Lagrange interpola-
tion problems which are known to be poised. Thus,
according to Lemma 4 of Sharma’s paper [2], it is evident
that this E,, is poised. We shall call solutions to our
problems a quasi-(0, 2) interpolation.

In Section 2, a quasi-(0, 2) interpolation for given
interpolation points {x;}*.,, k=2, is constructed in an
explicit form. Section 3 is devoted to discussion of the
uniform convergence of quasi-(0, 2) interpolation for the
class of twice-continuously differentiable functions
defined on the interval [—1, 1]. Then a convergence
theorem is obtained when both end-points, x,, and



Some Poised Lacunary Interpolation Polynomials

X, are —1 and 1; respectively. Strictly speaking, the
theorem gives a sufficient condition under which the
quasi-(0, 2) interpolation of the function f belonging to
the class converges uniformly to f in the interval. In
Section 4, another sufficient condition is also given.
This condition is useful in the case where interpolation
points consist of zeroes of the polynomial in the form,

(> = Dpr— (),

where p, _, is the (k—2)-nd orthogonal polynomial over
the interval (—1, 1). Here, a class of sufficiently smooth
functions is assumed. A computational algorithm for the
quasi-(0, 2) interpolation is also constructed in Section
5.

Finally, before proceeding to detailed discussions, it
seems to be necessary to describe motivations of the
investigation of our problems. The most important
purpose is to apply the quasi-(0, 2) interpolation as a
tool for solving numerically the following two-point
boundary value problems for the non-linear ordinary
differential equation of the second order,

Y'xX)=f(x, y(x)),inxe[-1,1],
W(=D=p(1)=0.
In fact, for a certain class of this boundary problem,
solutions can be well-approximated by means of the
quasi-(0, 2) interpolation. Also, the uniform conver-
gence of such approximate solution to its exact solution
can be proved for some infinite triangular matrix of

interpolation points. But this application is not discussed
in this paper.

2. Construction of Quasi-(0, 2) Interpolation

As shown in the Introduction, the quasi-(0, 2) inter-
polation problem is poised. Thus for any k points of
interpolation, there exists a unique solution, namely a
unique polynomial of degree at most k+1, satisfying
conditions (1.1). It is evident that all solutions form a
linear space of (k+2)-dimension which consists of all
polynomials of degree <k+1. Conversely, from well-
known properties of a basis within a linear space, every
solution can be expressed as a linear combination of
k+2 linearly independent polynomials contained in the
space.

Now, it is clear that the set of k+2 polynomials,
rlk(X; A)a rkk(X; A) and sik(x; A)9 i= l’ 29 Tt ka of
degree at most k+ 1 with respect to the variable x, satis-
fying the following conditions, is a basis determined by
the k-th row (x;, X4, * * *, X)) of the matrix 4 of inter-
polation points.

CONDITIONS:
(1) rp(xp; A)=6y, fori, j=1and k,
@) rixu; A)=0,fori=1,2, ---, kandj=1, k,
(3 splxu; A)=0, fori=1,kandj=1,2, ---, k,
@) sp(xu; A)=8,, fori, j=1, -, k,
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where 9,; is the Kronecker delta. Using this basis, there-
fore, every quasi-(0, 2) interpolation can be uniquely
written in the form,

K
@(x; Ay=ru(x; Ayt re(x; Ayu+ iZl sa(x; Ay,

@n

where y,;, v, and y2 (i=1,2, - - -, k) are k+2 arbitrary
real numbers.

We shall construct the basis of polynomials which
satisfy the above Conditions. Let r ,(x; 4) and ry(x; A)
be polynomials as follows;

N (x—xu)
rulx; A)= %1~ xu)’

N —(x—xu)
rul; A)= (x—xu)’

then it is easy to show that these are plynomials satisfy-
ing conditions, (1) and (2).

On the other hand, the remaining polynomials
sulx; A), (i=1,2, ---, k), can be obtained by solving
two-point boundary-value problems of second order
differential equations. In fact, the polynomial s,(x; A)
satisfying conditions, (3) and (4), is characterized as a
particular solution to the following two-point boundary
value problem,

s}j,(x; A)=Lik(X; A)v in X € [xtk’ xkk]’

Su(X s A)=5u(Xi; A)=0, 2.2)
where L,(x; A) is a fundamental polynomial of the
Lagrange interpolation and is defined as follows;

NS mx; 4)
L D= gt - @Y

here, m,(x; A) is the polynomial of degree &,

m,(x; A)=constant-(x— X, )(X —X5,) - - (x~xg). (2.4)
From well-known theory about ordinary differential
equations, for example [6], by using the Green function,
(x—x Q)(u—x)

(X — X 1)
(e +x ) (u+x)

(o —x1)

the solution to the boundary value problem (2.2) can
be obtained exactly and is expressed in the form,

, for xSugxy,
G(x, u; x14, Xp)=
, forx,Su<x,

Xkk
sl )= 6x, i 1, )Ll At 229
X1k

It is also easy to prove that this solution is the polynomial
satsfying conditions (3) and (4).

Procedures for interpolating a function by means of
a quasi-(0, 2) interpolation become the following. It is
assumed that the function f{(x) is at least twice-differen-
tiable. Then, in the equation (2.1), we can replace y,;
and y,, by values of f(x) at x=x,, and x,,, respectively,
and also y% by values of the second derivative f"(x) at
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x=xu (=12, -+, k). Consequently, the equation (2.1)
can be rewritten in the form,

ai(x, f; A)=r (x5 D)+ ru(x; Af(xa)
k Xkk
# 2 [ 00w 5 )L A )

™ (2.6)

with s,(x; A) represented in the equation (2.5). This
representation is the quasi-(0, 2) interpolation process
to the function f(x) over the matrix 4 of interpolation
points.

The quasi-(0, 2) interpolation process ¢,(x, f: A) has
the following properties:

PROPERTY 1. If f(x) is a polynomial of degree at
most k+ 1, then g,(x, f; A) is identical with f.

PROPERTY 2. The quasi-(0, 2) interpolation proc-
ess qi(x,f; A) has a property of linear operators with
respect to f; that is, for two arbitrary twice-differentiable
functions, f and g,

a(x, f+g; A=qx, f; A+q(x, g; A).

Proofs of these properties are clear and these properties
are useed in the proof of Theorem 1 in Section 3.

3. Main Theorem for Uniform Convergence

In this section, a sufficient condition for the uniform
convergence of quasi-(0, 2) interpolation process is
investigated in the class C*[— 1, 1] of twice-continuously
differentiable functions defined on the interval I=
[—1, 1]. First of all, the difference between f(x) belonging
to C}[—1, 1] and the interpolation process gy(x,f; A)
are estimated over the matrix 4 of interpolation points.
A sufficient condition under which the interpolation
process q,(x, f; A) for every fe C*[—1, 1] converges
uniformly to fin 7 is described in Theorem 2.

In the sequel, the interpolation points {x,}%_, are
restricted as follows;

—l=x<xp < <xXe=1,

for every k=2, that is, both end-points are fixed as
xy=—1 and x,,=1. Let w(5) denote the modulus of
continuity for functions, where § is a sufficientlly small
positive real number. If the function is continuous, then
w(8)—0 as 6—0. It is convenient to introduce a function
defined by,

k 1/2
Mk(A)=maX{ % Lalx; A)z} , (ER))
xel li=1

where L;(x; A) are polynomials defined by the equation
(2.3).

Now, we describe the first theorem.

THEOREM 1. Let k be any integer =2. If fe
C?3[-1,1], then the quasi-(0,2) interpolation process
q:(x, f; A) satisfies the following inequality,

9=t s30(3) + M1 ). G2

C. Suzuki

for every matrix A of interpolation points and for any
x € I, where @ denotes the modulus of continuity for the
second derivative of f.

It should be noted that the inequality (3.2) gives a
priori evaluations of errors in the interpolation process
q(x, f; A) of f(x). Two lemmas are used in order to
prove Theorem 1. The first lemma is immediately derived
from the following Jackson’s theorem.

Jackson’s Theorem [7]: Let k be any integer =1
and u(x) an arbitrary continuous function defined on
the interval [—1, 1]. Then, there exists a polynomial
pi(x) with degree at most k& which satisfies the inequality,

)i 5607,

for every x e [—1, 1], where @ denotes the modulus of
continuity of the function u(x).

In order to construct the polynomial satisfying the
above inequality, the constructive method by de la
Vallée-Poussin can be used [7], [8]: Let m be any integer
>1 and introduce a function Q,,,_,(¢; u) derived from
the given function u(x) as follows,

© H 4
Qom—1(t; W)= %{ j-_m u(cos<t+ %))(S—l;—y) dy.

Then, this Q,,., is a polynomial of degree at most
2m—1 with respect to x when the variable ¢ is replaced
by cos™! x. In addition, Q,,,_(cos™! x; u) satisfies the
inequality of Jackson’s Theorem if m is chosen in such
a way m=[(k+1)/2]), where [.] denotes the Gaussian
symbol. The following lemma is a direct consequence
of Jackson’s Theorem.

LEMMA 1. Let k be any integer >2. If a function
f(x) belongs to C*—1,1], then Q,,_(cos™!x;f")
satisfies the inequality,

1
1f ()= Q3m-1(c0s ™" X;f”)|§6w(k>,

for energy xel, where m=[(k+1)/2] and w is the
modulus of continuity for the second derivative of f.

The second lemma is as follows;

LEMMA 2. Let f be any function belonging to
C?[-1, 1] and k any integer =2. If p(x) is a polynomial
of degree at most k+1 whose second derivative is
Ozm—1(cos™! x; ") where m=[(k+1)/2], then the fol-
lowing evaluation holds for every infinite triangular
matrix 4 of interpolation points. Namely, for any x € /,

1
i, p—1; A) S6M(A) (ﬁ)

where w is the modulus of continuity for the second
derivative of f(x) and g;(x, p—f; A) is as follows,

k
qi(x, p—f; A= i; Ly(x; A{p"(x)—f"(x)}. 3.3

PROOF of Lemma 2: Using Schwarz’ inequality,
the equation (3.3) is estimated as follows,
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k 1/2
410, p—: A< M(A) {z Ten —f”(xu)lz} ,
< MAWE max ()= (4)

By applying Lemma 1 to the last term of the above
equation, the proof of this lemma is complete.

PROOF of Theorem 1: Define a function R(x, f; 4)
on the interval [—1, 1] such that R.(x,f; A)=f(x)—
qi(x, f; A), then this function is twice-continuously dif-
ferentiable with respect to variable x and has zeroes at
X=X, (=—=1), and x, (=1). Thus R,(x, f; A) can be
regarded as a particular solution to the following
boundary value problem;

Ri(x. f; D=f"(x)—qix, f; 4),inxe[-1,1],
R(-Lf; =R, f; 4)=0.

Then, as stated in Section 2, the solution can be written
in the form,

Rx f: )= r

, G(x, u; — 1, D{f"(w)—qi(u, f; A)}du.

Now, R,(x, f; A) can be evaluated from the above equa-
tion as follows,

Ry, )
1

<max j' IG(x, u; A)ldu max| f()—gi(u, f: A,
-1 uel

xel

1
£ 5 max | f" (W) - qilw. f; A, (3.5

since

1
1
max j |G(x, u; —1, ]du=5. 3.6)
1

xel E
On the other hand, it is clear that

[f ()~ qi(x, f; 4|
S ~p" N+ gi(x, [ A—p" (%),

for all polynomials p(x), where p”(x) is the second
derivative of p. In addition, when p(x) is a polynomial
of degree at most k+ 1, it is also true from Properties
1 and 2 that

[f(x)—qi(x, f; DI ()~ p () +1gqk(x, f~—p; A)l.
(3.7

In the inequality (3.7), we have freedom in the choice
of p(x), since p(x) is an arbitrary polynomial of degree
at most k+ 1. In other words, we may take a polynomial
p(x) such that its second derivative is identical with
Qzm-1(cos™'x; f") defined for f“(x), where the degree
of Qym—-1 is at most k—1 as m=[(k+1)/2]. Then the
first term of right hand side in the equation (3.7) can be
evaluated by Lemma 1 as follows,

|f" @)= ) =1 f" ()~ Qam—1r(c0s ™" x; )] S w(ﬁ)
3.8

for every x € I. The second term is also evaluated by
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Lemma 2 as follows,

1
max lgxCe, f~p; A §6M.(A)w(7,;), (3.9

Combining equations (3.7), (3.8) and (3.9), the proof of
Theorem 1 is complete.

Theorem 1 leads to an interesting result as follows;

THEOREM 2. Let f be a function belonging to
C?[—-1,1]. If the triangular matrix 4 of interpolation
points satisfies

lim M (A4)<co,
k=
then the quasi-(0, 2) interpolated polynomials g,(x, f; A)
converge uniformly to f(x) in the interval [—1, 1] as
k— 0.

PROOF: The proof of this theorem is simple. The
difference between f(x) and g,(x, f; A) can be evaluated
by the inequality (3.2) in Theorem 1. On the other hand,
since f”(x) is continuous and M,(A4) is bounded for
every k>2, the right hand side in the inequality con-
verges to zero as k—o0.

This theorem asserts that the equation (3.10) is a
sufficient condition for the uniform convergence of
quasi-(0, 2) interpolation process for every twice-
continuously differentiable function defined on the
interval [—1, 1]. We can find an example of the infinite
triangular matrix satisfying the sufficient condition.
Namely, let L’ be the matrix whose k-th row consists of
zeroes of the polynomials,

(> = Dpi-1(x), (3.1

where p;_,(x) is the first derivative of the (k—1)-st
Legendre polynomial. Then, we can show that the
matrix L’ satisfies the inequality (3.1). In fact,

(3.10)

k 1/2
lim max{ La(x; L’)’} <l (3.12)
1

k= xelI li=
This inequality was proven by L. Fejér in 1932 [9]. Then,
it follows by Theorem 2 that the quasi-(0, 2) interpolated
polynomials g(x, f; L") for any f(x) belonging to
C?*[—1, 1] converge uniformly to f'in the interval [—1, 1].

4. Uniform Convergence over A Class of Restricted
Functions

In a special case where an infinite triangular matrix
has k zeroes of the following polynomial as its k-th
row;

(e = 1)py - 2(%), @“.n

where p,_,(x) is an arbitrary (k—2)-nd orthogonal
polynomial over the interval (—1, 1), it is not easy to
prove that the matrix of interpolation points satisfies
the uniform convergence condition of Theorem 2 [10].
But if the function to be processed by means of the
quasi-(0, 2) interpolation is restricted, then a simpler
sufficient condition for the uniform convergence can be
derived.
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In this section, we shall consider the uniform conver-
gence property of the interpolation process for any func-
tion belonging to the class C[—1, 1): For any fe
C*)[—1, 1], we assume

(1) fis an infinite-times differentiable function de-
fined on the interval [—1, 1],

(2) there is a bounded constant C,=0 such that,
for every integer n=0,

upL “el <c,. @.2)

xe! n! -

It should be noted that this class contains analytic
functions, but the converse is not necessarily true.

In order to describe a theorem, a useful notion is in-
troduced for the matrix A4 of interpolation points. Let
O(x, A) be a monic polynomial of degree k whose
zeroes consist of all elements of the k-th row of the
matrix 4. Then the set of these polynomials for k=2,
3, -+ - forms an infinite sequence, that is, {®(x; A)}2 ,.
For this sequence, if there exists a real number p>0
such that for every i22,

su? [+ 1) +2)O(x; A SChi™, 4.3)

with a bounded constant C,>0, then the matrix A4 is
said to be convergent with order p.

The following theorem is an interesting result;

THEOREM 3. Let f be a function belonging to
C™[—1,1] and k2. If the matrix A of interpolation
points is convergent with order p>0. Then the quasi-
(0,2) interpolated polynomials g(x,f; A) converge
uniformly to f(x) in the interval [—1, 1]. In addition,
its convergence rate is greater than or equal to k.

PROOF: Let R(x,f; A)=f(x)—q(x,f: A). This
Ry(x,f; A) is an infinite-times differentiable function
defined on the interval [—1, 1] and its second derivative
is zero at the interpolation points, X, Xz, =", Xp.
Thus, under these conditions, the following equation
can be derived by Rolle’s theorem;

Rix, f; A)=13 ®k(x Af*EIEY, 4.4

where &, is a certain point in the open interval (—1, 1).
On the other hand, by the definition of g,(x,f; A4),

Ri(x,f; A) is zero at x=x,, and x, where x,,=—1
and x,,=1. That is,
Ry(=L1f; =R, f; 4)=0. “4.5)

Therefore, equations (4.4) and (4.5) form a two-point
boundary value problem for the ordinary differential
equation of second order. Then as stated in Section 2,
the solution to this problem is written in the form,

1
R fi )= | 6n w5 =1, D@5 A0

(4.6)

Now, R, can be easily evaluated from the equation (4.6)
as follows,

C. Suzuki
[R(x, f; A)|

max | f&+2(x)|
xel . A
< &+ n::,,x I(k+ D(k+2)O,(x; A)l

X max ]’1 1G(x, u; —1, 1)|du, “.7

xel

for every x € I. By the assumption, there exists a constant
C, such that for every k22,

max |[(k+ 1)(k+2)Ou(x; A SC,k™?.  (4.8)
xel

Therefore, from equations (3.6), (4.7) and (4.8), a bound
of Ry(x, f; A) is given as follows;

IRix, £ )| S 5,C,Cok ™, 49)
for every x € I, since f belongs to C'®’[—1, 1]. Then the
right hand side of the equation (4.9) converges to zero
with the rate k~” for any x e I. The proof of this theorem
is complete.

We can show some examples of matrices of interpola-
tion points that are convergent with order p>0. As the
first example, let T be a matrix of interpolation points
whose element of k-th row consists —1, 1 and zeroes
of the (k—2)-nd orthogonal Chebyshev polynomial over
the interval (—1,1). Then the corresponding monic

polynomial @, (x; T) is evaluated as follows; for any
k=2,

96
sup [(k+ 1)k +2)O,(x; T)| < &+

Thus the order of this matrix T is 1. On the other hand,
in the case of the matrix L’ discussed in the previous
section, the evaluation of the corresponding monic
polynomial @,(x; L') is as follows;

192
*+3y

for any k=2. The order of the matrix L’ is also 1. As
the last example, we shall investigate the matrix L of
interpolation points whose elements of its k-th row
consist of —1, 1 and zeroes of the (k—2)-nd Legendre
polynomial. In this case, the corresponding monic
polynomial ®,(x; L) is evaluated as

sup [(k + D0k +2)0,(x; L) S 755

sup Ik + Dk +2)O(x; L)|<\/k 3

for every k>3. Therefore, it shows that the order of
this matrix L is 1/2.

Note that the above inequalities can be derived by
simple computations.

5. Formula for Numerical Computation

This section is devoted to discussing an algorithm for
computing values of the quasi-(0, 2) interpolation at
any point x* € [— 1, 1]. An essential part of the compu-
tations is the evaluations of polynomials {s,(x; 4)}%.,
at the point x* and remaining parts are very simple.
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Thus, the algorithm of computations is discussed only
for polynomials s,(x; A).

By employing the equation (2.5), the value of s;,(x*; 4)
is obtained by numerical computation. However it is
expensive from points of view of the computational ac-
curacy and its processing time to carry out directly the
integration contained in the equation.

In order to derive numerically computable formula
of the polynomial s,(x; 4), suppose that s,(x; 4) is
expanded as follows,

k=1
Sadx; Ay=(x— X, )(x — Xu) j;o Cii, k)x!,  (5.1)

where C;(i, k) are coefficients defined by 7 and interpola-
tion points, x,,, Xz, ", X These coefficients are
determined as the polynomial (5.1) satisfies conditions
(3) and (4) in section 2. However, C,(i, k) are, actually,
defined only by the condition (4) since the polynomial
(5.1) is already satisfying the condition (3) since it has
common factors (x—x,,) and (x—x,,). In other words,
coefficients C,(i, k) are determined as the second order
derivative sj(x; A) of the polynomial (5.1) satisfying
the following equation;

Si(x)=Ly(x; A), 5.2
for all real numbers x, where L,(x; A4) is defined by the

equation (2.3) and can also be expanded in the form with
power series of x as follows,

k-1
Lu(x; d)= 'Y afi, k; A)x, (63
i=0
where,
e i
e 59
H (o — Xp) ’

p=1,#i
In the equation (5.4), [x 4 Xsp ' s Xulf /™! means
all products of k—j—1 different elements chosen within
the set {x4, ***, X;_1 4 Xi41 .0~ > X} Of interpolation
points except for x, and X denots the total sum over
all numbers of its combination, k!/{(k—j— D!(i+ D!}.
Therefore, if the left hand side in the equation (5.2) is
replaced by the second order derivative of the poly-
nomial (5.1) and the right hand side is replaced by the
equation (5.3), then the following equation is obtained.

{(k—1D?+3k—1)+2}Cp_ (G, k)x*1
+{(k=2)2+3(k—2)+2}C,_ ,(i, k)x* 2

+ 3 GHYHDCL D=+ DUHDC 6 )
=5 ai ks Ay, (5.5)
i=0

By comparing coefficients of powers of the same order
in both sides of the above equation, we can obtain the
following recurrence equation for coefficients C;(i, k),

, ) 1
Cili, k)=C;,,(, k)+j1+‘T+2

for j=k—3,k—4, ---, 1,0, where for j=k—1and k-2

o, k; 4), (5.6)
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1
Ck——l(ir k)=(k— 1)2+3(k_ l)+2ak—1(ia k; A); (57)

and
1 .
&= +3k—2) 122

The equation (5.5) is valid for all real numbers x if and
only if coefficients C,(i, k) satisfy equations (5.6), (5.7)
and (5.8).

Finally, it is easy to solve numerically the recurrence
equation (5.6) for initial conditions C,_,(i, k) and
Cy.— (i, k). Then values of all polynomials {s;,(x; 4)}*_,
at any point x* e[—1, 1] can be immediately computed
by using the form of the equation (5.1). Therefore, the
quasi-(0, 2) interpolation can be computed at any point
in the interval [—1, 1], since values of two remaining
polynomials r,(x; A) and r(x; A) of basis at the point
are easily computed.

The present algorithms constructed under the inter-
polation points corresponding to matrices L, L' or T
seem to be stable, judging from several numerical
experiments, even though more detailed error analyses
are left to be done.

Ci- 2(i, k)=

k; 4). (5.8)

6. Conclusions

An explicit quasi-(0, 2) interpolation has been con-
structed and two sufficient conditions for its convergence
have been obtained: Theorem 2 is applicable to any
twice-continuously differentiable function defined over
the interval [—1, 1] and it asserts that the uniform
convergence of quasi-(0, 2) interpolation process is
assured over matrices 4 of interpolation points, whenever
the inequality (3.10) is satisfied for A4.

Theorem 3 can be applied to the class of functions
satisfying conditions (1) and (2) in Section 4. Namely,
this class is smaller than the class of twice-continuously
differentiable functions, but broader than that of an-
alytic functions. In such a class, whenever the matrix 4
of interpolation points has the convergence rate of order
p>0 as is discussed in Section 4, the uniform conver-
gence of the interpolation process is assured over A4.

A computational algorithm for the quasi-(0, 2) inter-
polation was constructed in Section 5. That is, by
employing basis polynomials represented in the equa-
tion (5.1), the interpolation is easily computed at any
point belonging to the interval [—1, 1].
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