An Evaluation of a Generalized Database Subsystem

TAKENORI MAKINO,* MASAYUKI MizuMA,* SHIGEKI HiYOsHI,*
MASANOBU WATANABE* and KATSUYA HAKOZAKI*

A feasibility study for a database machine is discussed. A generalized database subsystem (GDS), which
supports different data models, shares a host main memory with the host processor, and basically manipulates a
single record. From the experiment, it is shown that the GDS can perform data manipulation in a database
system at high performance level due to the combination of firmware and hardware, also the host processor
offload rate to the GDS is an important factor in increasing system throughput. These results will be useful to

design practical database systems.

1. Introduction

Database oriented systems have been increasing in
number, in accordance with advances in database
management techniques. This trend poses a significant
database performance problem. Extensive use of data-
base management functions puts a heavy database load
onto a system. As a result, the system tends to be data-
base management bounded. Currently used general pur-
pose computers are not designed to effectively manipulate
non-numeric data, while database management functions
require extensive non-numeric data manipulation power.
A database machine is expected to be the solution to
establish cost effective database systems.

There are several approaches to database machine
problems, as Champine explained in his article [1].
These approaches can be classified into three categories,
in view of data search algorithms. One is based on full-
scan. Logic-per-track devices such as RAP [2], RARES
[3] and, CASSM [4] are included in this category. The
second category is an extension of conventional search
algorithms, which use indexes and pointers (or links). A
classical back-end processor XDMS [5] is in this cate-
gory. The third category is a combination of the above
two approaches. DBC [6] by Hsiao and others is clas-
sified into this category. Each has different advantages
and disadvantages. They should be evaluated from vari-
ous viewpoints.

Based on an assumption that a large capacity high-
speed memory device, which can replace moving-head
disk devices, and a high-speed processing element will be
economically available, a full-scan database machine is
advantageous. An associative memory can be economi-
cally constructed under the above assumption. Applica-
tion systems will fully utilize the associative memory
capability for obtaining rapid response to a variety of
queries.

However, there are occasions when the above assump-
tion is not satisfied. Disk devices have been dominantly

*Computer System Research Laboratory, C & C Systems Re-
search Laboratories, Nippon Electric Co., Ltd., Japan.

Journal of Information Processing, Vol. 5, No. 1, 1982

used for database storage media and for some time in
the future will continue to be used. Proposed new
memory devices, such as charge-coupled devices or
magnetic bubble devices, are not penetrating the market
with the rapid growth rate expected, and the cost per bit
is not yet sufficiently low. This trend does not support
the assumption. Moreover, there are a large number of
application systems in which some fixed programs are
executed repeatedly for operational use. Traditional
database management systems favorably process this
application category, whereas associative memory
utilization is not so advantageous for this category. For
these reasons, it is considered premature to introduce a
full-scan database machine into a practical system.

The third approach is characterized a as combination
of a small capacity associative memory and a large
conventional memory device. The proposed systems,
such as DBC, seem attractive for a variety of application
classes. However, they are based on several new storage
device technologies, which are not proven as yet. Based
on the state-of-the-art technology, the approach has to
be evaluated for its feasibility from a more practical
viewpoint.

From a practical viewpoint, it is of great importance
that a database machine be developed based on con-
ventional search mechanisms, but that its database
processing power be greatly enhanced by using firmware
and hardware technology which, recently, has shown
significant improvement. Several non trivial problems
exist in this line. Functions to be performed in a data-
base machine, the relationship between implementation
methods for the functions and their performance, the
interconnection between a host processor and the data-
base machine and storage management are some of the
issues to be explored. It is necessary to obtain extensive
information about these problems. A previous paper on
a conceptual design for Generalized Database Subsystem
(GDS) [7], provides a basis for this study.

An experimental system, to be described in this paper,
has been developed to realize the GDS design concepts.
The major objectives of this experiment are as follows:

1) Obtaining the performance related data which can

be used to determine trade-offs for various im-

An Evaluation of a Generalized Database Subsystem

plementations.

2) Examining the functional trade-offs between the
host processor and the database machine for
typical database management systems.

3) Exploring some problems encountered to realize
a practical database machine.

A user microprogrammable minicomputer is used as

a vehicle for this experiment in order to evaluate soft-
ware/firmware/hardware trade-offs. The minicomputer
is connected to a host, which is a medium scale general
purpose computer (ACOS System 400).

In this paper, the data manipulation in a database
system is discussed intensively. The storage system, which
is another major part of the database system, is to be
evaluated separately for a storage hierarchy management
and is explained elsewhere.

Functional aspects of the GDS are briefly reviewed
in the following section. The experimental system and
the performance data obtained by the experiment are
explained. Based on the results, relational database
performance figures are estimated. The possible per-
formance enchancement, when a practical database
machine is to be realized, is also discussed.

2. Generalized Database Subsystem

Generalized Database Subsystem (GDS) provides
fundamental database functions which are efficiently
used to construct database management systems based
on different data models. A generalized high level func-
tional interface (GDI: Generalized Database Interface)
is defined to separate the database functions from a host
processor. The GDI is a single record access interface,
which can support a CODASYL and a relational
database. As the GDS design concepts are reported in
reference [7], only brief reviews are made here.

2.1 Generalized Database Subsystem Functions

The GDS completely controls logical and physical
storage structures. This means that the host processor is
free from executing complex physical and logical input-
output functions and also that the GDS is able to keep
the physical storage structures at an optimum state
without affecting the host processor.

The logical storage space is introduced into the GDS,
which is independent of physical devices and data
structures. A logical record address consists of an area
number, a page number and a line number. Database
objects are organized with any of the following three
storage structures: (1) Key Sequenced, (2) Key Random-
ized and (3) Entry Sequenced structures. In addition, two
kinds of secondary access paths, Link and Image, can be
set up for database records. Link represents the parent-
child relationship between records, which is provided
by means of a pointer chain. Image is a secondary index
in which each entry contains a pair of a key value and a
logical record address.

31

2.2 Generalized Database Interface

The GDI commands are classified into three cate-
gories: (1) database definition, (2) data manipulation and
(3) control commands. The outline of GDI commands
is explained with two examples; a relational and a
CODASYL database.

Figure 1 shows how a query language is decomposed
into a sequence of GDI commands. A database structure
is described in Fig. 1(a). It is assumed that the EMP
(employee) relation has the image path IMGLOC for
the LOC (location) field and that the link path LDNO
is defined to specify a join relationship between the EMP
relation and the DEPT (department) one.

The query in Fig. 1(b), which is represented in QUEL
of INGRES [8], means to list the name, salary and de-
partment for the employees who work in Tokyo and get
more than 200,000 yen in salary. The query is decom-
posed as in Fig. 1(c). At first, the START-TRANS
command sets up a communication path between the

SALJ

ENP EHPNO | NANE | DNO JOB

link{LDNO)}

DEPT LDHO] DNANME I LOCJ

A

inage(INGLOC)

Fig. 1(a) Data structure.

RANGE OF E IS EMP
RANGE OF D IS DEPT
RETRIEVE E.NAME, E.SAL, D.DNAME
WHERE D.LOC=“TOKYO"
AND D.DNO=E.DNO
AND E.SAL GT ‘200000
Fig. 1(b) Example of a query.
001 START-TRANS return (trans-id (TR1));
002 USE-AREA (area (DBAREA), shared retrieval);
003 INIT-PATH (image (IMGLOC), image-key =*“TOKYO”")
return (cur-id (C1));

do while S1=exist;
004 GET-IMAGE-NEXT (rec-id (DEPT), cur-id (C1),
f-list (FLDNAME), s-cond (LOC="TOKYO"))
return (status (S1));
005 INIT-PATH (link (LDNO), cur-id (C1))
return (cur-id (C2));
do while S2=exist;
006 GET-LINK-NEXT (rec-id (EMP), cur-id (C2),
f-list (F2.NAME, F3.AGE), s-cond (SAL GT *200000))
return (status (S2));
end;
end;
007 RELEASE-PATH (cur-id (Cl1, C2));
008 RELEASE-AREA (area (DBAREA));
009 END-TRANS (trans-id (TR1));
Fig. 1(¢) GDI command sequence.

Fig. 1 Relationship between a query language and GDI com-
mands.

32

host processor and the GDS (in statement 001). Then,
the INIT-PATH command sets the Image starting
point into currency indicator C1 (003). By the GET-
IMAGE-NEXT command, the object record is found
and the next record address on the Image is set into Cl
(004). Then, the INIT-PATH command creates another
currency indicator C2 for Link, and the starting point is
obtained from the current record address in C1 (005).
The GET-LINK-NEXT command selects the next
record, on the Link, which satisfies the condition:
E. SAL>*200,000” (006). When the data manipulation
is completed, the END-TRANS command terminates
the communication path (009).

A relationship between the CODASYL data mani-
pulation language (DML) and the GDI command is
discussed below. At a DB (subschema-name) statement
in a user COBOL program, the logical data management
on the host processor makes ready for database process-
ing. That is, it generates a START-TRANS command
and also creates access paths for every record class and
set class defined in a subschema. DML commands in
the user program are translated into GDI commands.
In most cases, one DML command corresponds to one
GDI command. For example, FIND-ANY, FIND-
NEXT and GET record DML commands correspond to
GET-PRIM-DIRECT, GET-LINK-NEXT and GET-
CURRENT record commands in the GDI, respectively.

As described above, the GDS can be applied to both
relational and CODASYL database management sys-
tems.

3. Experimental Database Machine System

Figure 2 shows the experimental system structure. At
present, two database management systems are imple-
mented on the experimental system. One is a CODASYL
database system, which is completely compatible with a
commercial database management system. The other is
a simplified query system, which is operated either on a
stand alone system or with a host processor.

3.1 GDS Processor

A user microprogrammable minicomputer, Varian
V-76 is used as a GDS processor. Basic functions and
control programs, which are implemented by firmware,
are stored in writable control storage (WCS). The
developed microprograms are about 2 K steps. Main
memory consists of two banks. One is used to store the
programs and control tables. The programs are about
20 K steps. Some programs are overlaid. The other is
used for database buffers. The disk is applied to programs
and database areas. The V-76 computer is a 16-bit ma-
chine, with a memory cycle of 660 ns (nano-seconds); a
WCS cycle of 195 ns; a one word instruction time of
1320 ns; a double word instruction time of 1980 ns.

3.2 Inter-Processor Communication Mechanism

Figure 3 shows the inter-processor communication

T. MAKINO, M. Mizuma, S. HrvosHi, M. WATANABE and K. HAKOZAKI

HOST
Main Menory

Main Memory Interface

[1
HOST CPU % Gop
I I}

I/0 Interface
<D

Data
Base
GDP:Generalized Database Processor

Fig. 2 Experimental system.

>
v-op
L L MMT | {101
—p — — qpE —
Database Initiation
GDS
Buffer
Termination

UCA:User Comaunication Area
UWA:User Working Area

2IO:Physical 1/0 Routine
GDS:Generalized Database Subsysten
GDI:Generalized Database Interface
MMI:Main Menory Interface

I0I:I/0 Interface

Fig. 3 HOST-GDS interface.

mechanism. A user program specifies a GDI command
or a GDI command sequence in the user communication
area (UCA) and initiates a CALL GDI operator with
the UCA address and transaction identification. The
host processor and the GDS processor share the host
main memory through the main memory interface
(MMI) and are connected through and I/O interface. In
order to minimize the inter-processor communication
overhead, the data and GDI command parameters are
transferred through the main memory interface. The I/O
interface is used for process synchronization, that is, for
initiating a GDI command or for a termination notifica-
tion.

3.3 GDS Function Modules

The GDS processor consists of several function mod-
ules are classified into four categories; Transaction
management, Logical data access, Physical data access
and Page management modules.

Transaction management modules schedule transac-
tions, communicate with the host processor, and back

An Evaluation of a Generalized Database Subsystem

out transactions. Logical data access modules perform
data retrieval and maintenance functions on the data-
base. Data access module (DAM), which is a main
module, selects and updates data through the specified
access path. The information for data access is obtained
from a data catalog by Data descriptor access module
(DDA). Physical data access modules, which are im-
plemented by firmware, translate a logical page number
to a buffer memory address and manipulate the physical
record in the specified page. An example of one of them,
is the Data transfer module (DXM), which selects the
target record in the page using a binary search method
and transfers the specificed values to the main memory.
Page management modules split, allocate and replace
pages.

A GDI command is executed by using the above func-
tion modules. The routing among the function modules
is specified for each GDI command, and also the re-
cursive operation scanning indexes or link pointers are
specified.

Several ‘“‘primitives” are defined for each function
module in order to denote the actions performed in it.
When a “primitive’’ operation is initiated, the primitive
parameter values are set in a fixed area of transaction
control block and a function call is performed. As the
function module is implemented either by software,
firmware or hardware, the function call is accomplished
by a return-address-stack-and-jump, a WCS jump or a
I/O instruction, respectively. Transaction changing,
when a page fault occurs or a locked page is referred to,
is performed by setting new transaction identification
into an index register, which is used to refer to the
control block. This flow control scheme tends to reduce
transaction transition time among function modules and
overhead time for transaction change.

4. GDS Performance Evaluation

The GDS experimental system performance is meas-
ured on a simple and small database, whose structure is
shown in Fig. 1(a). The conventional database manage-
ment system performance is also measured on a medium

33

scale conventional computer with 0.25 MIPS under the
same environment. The I/O time is omitted in this
evaluation, in order to concentrate the discussion on the
database processing.

4.1 GDS Performance

GDI command execution times measured in the ex-
perimental system are shown in Table 1. It is shown that
the GDS performance in the experimental system is
much better than a medium scale conventional com-
puter. For example, a GET-PRIME-DIRECT command
without field value transfer is performed in 1.04 milli-sec.,
while a FIND-ANY DML, which corresponds to the
GET-PRIME-DIRECT, is performed in 6.56 milli-sec.,
in the conventional computer. A GET-LINK-NEXT
command is performed in 0.49 milli-sec., while a FIND-
NEXT DML execution time is 4.26 milli-sec. in the
conventional computer. The performance ratio for the
GDS and the conventional computer is about one to
eight. Therefore, it is considered that the GDS per-
formance is the same order as a conventional computer
with 2 MIPS, regarding the database processing The
GDS performance gain is considered to be brought by
the following factors;

a) Firmware effects: The firmware effects are examined
during module implementation. When a module
implemented by software is implemented again by
firmware, the execution time is reduced to 1/4~
1/10 of the time. It can be said that the performance
of a module is increased by a factor of at least four
by firmware implementation.

b) Simplified system control: The system control
scheme is specialized for database processing. Over-
head time required for a transaction change and a
function module call is sufficiently small. For
example, a function module call can be performed
in 2.6 micro-sec., while a call instruction in the con-
ventional computer is performed in about 30 micro-
sec. because of the time required for saving registers
and processor status.

To explain software/firmware/hardware trade-offs to
achieve a high performance GDS, two typical commands

Table1 GDI command execution time in the experimental system.

Command Time (msec) Command Time (msec)
Get-prime-direct 0.75+0.29n+0.13f Store (KR) 1.55+40.1n
Get-prime-next 0.28+0.29n+-0.13f Delete (KR) 0.97
Get-image-direct 0.42+0.13y+0.13f Store (ES) 1.05
Get-image-first 0.41+0.13f Delete (ES) 0.59
Get-image-next 0.214-0.13f Update (field) 0.204+0.28f
Get-link-first 0.414-0.13f Update (record) 0.51
Get-link-next 0.49+0.13f Connect 0.99
Get-link-owner 0.46+0.09m +0.13f Disconnect 0.69
Get-current 0.114-0.13f Get-scan-next 0.124-0.15x4-0.13f
Note: the number of records

record position on a Link

record position on a hash collision chain
the number of scanning records

index level

<xp 8-

34

T. MAKINO, M. MIZUMA, S. HivosHi, M. WATANABE and K. HAKOZAK1

Cosmand Catalog Catalog rield value
fatch access access access transfer
GDIP:160 DOA:150 DAM: 100 DOA: 30
ATM: 30 ATM: 30 AmM: 30|
OXM: 20 DXM: 60 DxM: 10
Root paged Record address | Offset, length

a) GET-IMAGE-DIRECT (image-id,

key value, field-id,

memocy address)

Command Link Field value
fetch access transfer
GDIP:190 DAM:220
ATM: 60
DXMs 20
Record address | Offset, length
b) GET-LINK-NEXT (cur=-id, field~id, mamory address)

Fig. 4 Function module elapsed time (micro-sec).
ATM: Address translation module (firm).
DXM: Physical data access module (firm).
GDIP: GDI command processor (soft).
DAM: Logical data access module (soft).
DDA: Data descriptor access module (soft).

are discussed as examples. Figures 4 shows the functional
module elapsed time in the experimental system. From
the results of GET-IMAGE-DIRECT command, in
Fig. 4(2), and GET-LINK-NEXT command, in Fig. 4(b),
further performance improvement will be accomplished
as follows;
a) Firmware implementation of software modules:
Although most of basic functions are implemented by
firmware, the ratio of software modules elapsed time to
firmware modules elapsed time is about 1 to 1.5. To
achieve high performance, most of the main function
modules need to be implemented by firmware.
b) Hardware implementation of basic modules: The
execution time of address translation module is 30 micro-
sec. Adopting a hardware mechanism, as described in
reference [7], the execution time becomes less than
2 micro-sec., including parameter transfer time. The
performance for Data transfer module, which manipu-
lates physical data, is limited by memory access time.
Therefore, the execution time is estimated to be reduce to
about 1/4 by adopting high speed memory devices and a
four byte memory system.

By such improvements, the GDI command execution
times, shown in Fig. 4, will become:
a) GET-IMAGE-DIRECT: (100+25y+20f) micro-

sec.,

b) GET-LINK-NEXT: (110+ 20f) micro-sec.
Compared with the execution times shown in Table 1,
these GDI command execution times reduce to about
1/5, when index level y is two and the number of fields
fis four. Therefore, GDS performance will be increased
about five times more than in the experimental system,
and will correspond to a large scale conventional com-
puter with 10 MIPS.

4.2 Communication Performance between Host Proces-
sor and GDS

The data transfer rate through the main memory
interface is limited by the minicomputer data transfer
rate, which is about 1 Mbyte/sec. This transfer rate is
large enough to transfer commands, parameters and
resulting data.

On the other hand, communication through the 1/O
interface is accompanied with overhead time, which is
about 1.5 milli-sec. in the experimental system, because
a general I/O package for online adaptors is used. To
reduce the overhead, a special I/O package, which
initiates and terminates GDS at high speed, or inter-
processor communication mechanism should be adopted.
By such improvement, the communication overhead,
including process synchronization overhead, will be
reduced to the order of 100 micro-sec. in medium scale
computers. However, this improvement needs an altera-
tion to the existing operating systems.

4.3 CODASYL Database Support

As described in the previous section, GDI commands
have equivalent commands in the CODASYL data
manipulation language. An object program generated by
a conventional database compiler is transformed into
GDI command sequences by a simple translator made for
GDS. Therefore, most of a data base management system
is moved to GDS, while that remaining on the host
system is merely the translator. In the experimental
system, the running time of the translator is reduced to
less than 20 % of the whole database management system.
That is, the offload rate of the host to GDS is more
than 809 in database management system. However,
introducing GDS, communication time is needed to
initiate and terminate GDS. If it takes 1.5 milli-sec., the

An Evaluation of a Generalized Database Subsystem

communication time becomes longer than a GDI
command execution time. Therefore, the communica-
tion time should be reduced to the order of 100 micro-sec.
as described in the previous section.

4.4 Relational Database Support

A relational database query is decomposed into a GDI
command sequence whose access cost becomes minimum
by access path selection strategies [10], [11]. The execu-
tion time for a query after the decomposition is discussed
in the following with the example query shown in Fig.
1(a). Though 1/O time is important, it is neglected.

Let n, be the number of restricted tuples in the DEPT
relation and n; be the expected number of tuples to be
joined in the EMP relation for each tuple. The following
three cases, which contain the best and the worst cases
for GDS, are examined;

a) When Image for restriction and Link for join exist:
The retrieval time is represented as
(GET-IMAGE-DIRECT)pgpr+ (1, — 1)(GET-IMAGE-

NEXT)pgpr+(1,)(n, X GET-LINK-NEXT)g\p,
where (command name), means the execution time for
the command for relation A.

b) When Image for restriction and Image for join
exist: The retrieval time is represented as
(GET-IMAGE-DIRECT)pgpr + (1, — 1 (GET-IMAGE-

NEXT)pgpr + (1,)(GET-IMAGE-DIRECT)y

+(n;— I)(GET-IMAGE-NEXT)gmp).

c) When neither Image nor Link for restriction and
join exists: In this case, if not sorted, the restriction and
the join operations are performed by a scan operation.
Let Npyp be the number of tuples in EMP relation and
let Npgpr be the number of tuples in DEPT relation.
The retrieval time is represented as Npgpr(GET-SCAN-
NEXT)pepr + 7, Nemp(GET-SCAN-NEX T) .

Consider that there are 10* tuples in DEPT relation,
10° tuples in EMP relation, n,=10 and n;=10. The
execution time in case a) becomes 6.04 milli-sec., in case
b) 8.44 milli-sec. and in case c) 1.5 x 10° milli-sec.

When there is neither Image nor Link for restriction
and join operations, the execution time by scanning
search on relations becomes too long to be used in real
time, even if I/O time is neglected. Therefore, in order to
achieve a high performance relational database system,
it is desirable to use a sorting operation in supporting a
join and a restriction operation without Image or Link.
The sort operation will be effectively performed by a
firmware implementation or introducing sorting hard-
ware.

5. System Performance Evaluation

The system performance is dependent on the host
processor offload rate to a GDS as well as the GDS
performance. As the host processor and the GDS
operate in parallel, the system performance, in multiple
transactions environment, can be estimated by a closed
queueing network [12].

35

Lo ——=THGS

Fig. 5(a) Evaluation model.

’ B m=4 N=00 T
? N8
5 s L N=4 T
B N=2
o

! 1 1 | 1 | Il | L
0.0 .2 4 .6 .8 1.0

0ffload rate

Fig. 5(b) Relationship between system throughput and offload
rate; m: performance rate, N: the number of trans-
actions.

Fig. 5 System throughput evaluation.

Let an expected transaction service time by only the
host processor be unity. Assume that the transaction
service time by the host processor or the GDS is ex-~
ponentially distributed and that the GDS can execute
the transactions offloaded from the host processor m
times faster than the host processor. Therefore, when
the host processor offload rate to the GDSisa (0<a<1),
the expected transaction service times by the host
processor and the GDS are (1 —«) and a/m, respectively.
Figure 5(a) shows this evaluation model, where 1/O
devices are neglected. When there are N transactions in
this system, the probability p(n) that there are n transac-
tions in the host processor can be obtained from [12],
as follows:

m(1—o)\" [¥ /m(1 —a)\'
o= () [5 ().
In this case, system throughput T can be derived as:

T=[1-p0)/(1-a).
After some computations, the system throughput can be
rewritten as:

m{a" —[m(1 —a)]}" m+1
T FET—TL&?L’ for0<a<l, a;é—m——,

N(m+1)[(N+1), for a=

m
m+1°

From this equation, given offload rate « and GDS per-

36

formance ratio to the host processor m, the system
throughput is derived. Figure 5(b) shows the relationship
between the system throughput and the offload rate,
rate, when that performance rate m is 4. The offload rate
at the maximum throughput varies with the number of
transactions in the system, and inclines toward a higher
number as the number of transactions decreases.

In a CODASYL database, it is said that the database
management ratio to the whole system is about 1 to 2,
application program rate is 209, and data communica-
tion rate is 30%,. The offload rate to the GDS becomes
409, because 809, of the database management is
offloaded to the GDS. Therefore, the system throughput
increases by 679,. The host processor and GDS system
executes databse applications with high performance
per cost, because the GDS can be implemented by a
small amount of hardware.

On the other hand, the relational database also has a
problem with respect to the offload rate. Before this
experiment, the time required for a query parsing had
been considered to be smaller than the data manipula-
tion time. However, if often takes longer than the data
manipulation to perform the query parsing, even in
this simplified query system. A paper about the per-
formance evaluation, in INGRES [13], reports that the
performance characteristics of two query types: data-
intensive queries and overhead-intensive queries, are so
different that it may be difficult to design a single
architecture that is efficient for both. It is also shown that,
in the overhead-intensive queries, the data processing
time is much less than the time for setting up the query,
while the data processing time becomes greater than the
query setting up time, in the data-intensive queries.

These results show that the host processor offload rate
to the GDS is dependent on query property. If a query
is overhead-intensive, the system throughput does not
increase, as shown in Fig. 5(b), even if the GDS has high
performance. On the other hand, the system throughput
may be effectively increased for a data-intensive query.

From the above discussion, in order to support a
relational database effectively in a general case, the
offload rate should be raised. Therefore, the command
interface between the host processor and the GDS
should be set up to a query level, rather than a single
record interface, and it is necessary that the GDS per-
form the query parsing and access path selection. It is
expected that high performance query processing can be
achieved by implementation of firmware and hardware
modules in a similar manner to the GDS, as described
in this paper.

6. Conclusion

An experimental database machine is implemented to
verify the efficiency of a GDS in database systems. The
GDS, in the experimental system, is implemented on a
microprogrammable minicomputer, and the basic func-
tions are performed by firmware. The experimental sys-

T. MAKINO, M. MizuMa, S. HrvosHi, M. WATANABE and K. HAXOzZAKI

tem is designed to obtain the performance information

for hardware/firmware/software trade-offs in the data-

base machine implementation.

A logical interface between a host processor and the
GDS, called a GDI, is a highly functional single record
interface effectively supporting not only a CODASYL
database, but also a relational database. In the experi-
mental system, a simplified query system and a
CODASYL database interface program are provided
on the host system for the experiment.

From results in the experiment, the GDS performance
was evaluated as follows:

1) The GDS performance on a minicomputer is the
same order as a conventional computer with about
2 MIPS. With further improvement, it is expected to
correspond to a conventional computer with 10
MIPS.

2) A command, data and parameter transfer time is
sufficiently short because of a memory sharing
interface used between the host processor and the
GDS.

3) A command or command sequence initiation and
termination time is too long to neglect, because an
I/O interface is used. It is, however, reduced to
a low overhead by inter-processor communication.

4) The offload rate to the GDS, in an online
CODASYL database, may be about 40% of the
system. Introducing the GDS, the system throughput
will increase by about 70 %;,.

5) In the case of a relational database, the offload rate
is dependent on a query type. For effective support
both data-intensive and overhead-intensive queries,
the command interface should be set up to a query
level, rather than the GDI.

As described above, data manipulation in a
CODASYL and a relational database is effectively per-
formed by the GDS, which is a special processor oriented
to database processing. However, some problems exist
about the offload rate and the communication overhead.
Under this condition, possible alternatives for a practical
database machine implementation are considered as
follows;

1) A tightly coupled database machine with a host
processor: It should be called a database booster.
The database booster performs GDI commands to
support a common part of a CODASYL and a
relational database. It will realize a high cost-per-
formance database system for a CODASYL data-
base and a data-intensive query.

2) A loosely coupled database machine: The database
machine is connected with a host processor through
an I/O interface, and has a query level command
interface. In this case, it is not necessary to use a
main memory sharing interface, because the com-
munication overhead time may be small enough
compared with query execution time.

These results will be useful to implement a practical
database machine, according to application fields.

An Evaluation of a Generalized Database Subsystem

However, some important problems to implement practi-

cal database systems remain, which include the follow-

ing;

1) Database I/O and memory hierarchy management.

2) Strategies for query parsing and access path selec-
tion.

3) Total system architecture including a recovery facil-
ity for the system failure.

These problems will be examined for a CODASYL and

a relational database.

Acknowledgement

The authors are grateful for continuous encourage-
ment and advices of Mr. K. Nezu of Nippon Electric Co.,
Ltd. Thanks are also due to Dr. A. Sekino of Nippon
Electric Co., Ltd for his appropriate suggestion.

References

1. CHaAMPINE, G. A. Current Trends in Data Base Systems, Com-
puter, 12, 5 (May 1979), 27-41.

2. OzkARAHAN, E. A., SCHUSTER, S. A. and SMITH, K. C. RAP-
An Associative Processor for Data Base Management, Proc. NCC
(1975), 379-387.

3. LN, C. 8., SMity, D. C. P. and SMITH, J. M. The Design of a

37

Rotating Associative Memory for Relational Database Applica-
tions, ACM Trans. Database Systems, 1, 1 (1976), 53-65.
4. Su,S. Y. W. and Lirovskr, G. J. CASSM: A Cellular System
for Very Large Data Bases, Proc. International Conference on
VLDB (1975), 456-472.
S. Canapay, R. H. and et al. A Back-End Computer for Data
Base Management, Commun. ACM, 17, 10 (Oct. 1974), 575-582.
6. BANERJEE, J., Hsiao, D. K. and KanNaN, K. DBC-Database
Computer for Large Databases, JEEE Trans. Comput., C-28, 6
(1979), 414429,
7. Hakozakl, K., et al. A Conceptual Design of a Generalized
Database Subsystem, Proc. 3rd VLDB (1977), 246-253.
8. STONEBRAKER, M. WoONG, E., Kreps, P. and HeLp, G. The
Design and Implementation of INGRES, ACM Trans. Database
Systems, 1, 3 (1976), 189-222.
9. BAYER, R. and MAcCRrEIGHT, C. Organization and Mainte-
nance of Large Ordered Indexes, Acta Inf., 1, 3 (1972), 173-189.
10. Yao, S. B. Optimization of Query Evaluation Algorithms,
ACM Trans. Database Systems, 4, 2 (1979), 133-155.
11. BLasGEN, M. W. and Eswaran, K. P. Storage and Access in
Relational Data Bases, /BM Syst. J., 4 (1977), 363-377.
12. Gordon, W. J. and NewkLL, G. F. Closed Queueing Systems
with Exponential Servers, Opns. Res. 15 (1976), 254-265.
13. HAWTHORN, P. and STONEBRAKER, M. Performance Analysis
of a Relational Data Base Management System, Proc. ACM-
SIGMOD (1979), 1-12.

(Received June 26, 1981 : revised September 18, 1981)

