Procedure Level Data Flow Processing on Dynamic
Structure Multimicroprocessors

TATSUO SUZUKL* KEN KURIHARA,*
HIDEHIKO TANAKA* and TOHRU MOTO-OKA*

TOPSTAR, a highly parallel multi-microprocessor system is designed and constructed. It executes procedure
level data flow processing (one data flow node is one procedure). TOPSTAR is composed of two kinds of
modules (CM’s and PM’s). Each module is a conventional micro computer system. The connective structure of
TOPSTAR is a locally connected bipartite graph. The control right belongs to each CM (which keeps unenabled
data), and distributed control mechanism is attained. The load balancing problem is solved by the free competi-
tion rule.

Five kinds of basic nodes are prepared for programming in the data flow graph language. Most Petri nets,
involved in the Free-Choice Petri net subclass, can be realized by using these basic nodes.

System software is implemented. The overflow in data buffers is avoided by introducing inhibitors (of the
Petri net). Plural data buffers are attached to each node, and tokens can get ahead of others to provide more
pipeline parallelism. Several program structures (such as conditional branch, loop and recursion) are available.

TOPSTARC-II consisting of 24 microprocessors is constructed and working with some applications. They are
parallel mergesort, simulation of logical circuits, some arithmetic calculation, etc. Actually measured result in

the case of parallel merge-sort are also reported.

1. Introduction

The data flow concept is a principle well suited to
control a highly parallel system. Locality in the system
control mechanism as well as mutual dependency among
process executions can be attained [1]-[4]. It is necessary
to construct a real machine and gain wide experience, in
order to investigate the practical availability of a data
flow machine.

Data flow machines are considered to be multi-proc-
essor systems, in which each processor has instruction
level data flow control mechanism [1]. We introduce
procedure level data flow processing as the first step,
where one node of a data flow graph corresponds to one
procedure. Each procedure (i.e. inside program of each
node) may be written as a conventional program, and
executed in the conventional manner. However all high
level (inter-procedures) relations are controlled and
executed as a data flow program.

Procedure level data flow processing can extract less
parallelism than instruction level. But it is suitable for
multi-microprocessors system to utilize conventional
LSI processors, and it is also favorable from the view
point of the time ratio of transfer overhead period (it is
often dominant) to execution period [5]. It is also possible
to replace each conventional LSI processor with an in-
struction level data flow machine.

TOPSTAR was designed and constructed as a proce-

*Faculty of Engineering, University of Tokyo, Hongo, Tokyo
113, Japan.

Journal of Information Processing, Vol. 5, No. 1, 1982

dure level data flow machine. The system hardware is
composed of two kinds of modules which play the roles
of ‘place’ and ‘transition’ in Petri net [6], which has good
correspondence with a data flow graph. Each data flow
processing node, which is a procedure, is separated into
‘place’ and ‘transition’ and they are executed inde-
pendently on two kinds of modules. The most important
feature of the data flow system is the connective structure,
which decides the communication cost and efficiency.
Inter-module connections of TOPSTAR are overlapped
so that the system flexibility is increased. Connective
range is restricted among modules so that highly parallel
machine may be constructed easily. DMA (Direct
Memory Access) is used as a high speed commu-
nication mechanism with minimal overhead, in order
to install direct high speed data transfer between main
memories.

A data flow graph language is used in TOPSTAR. It
is designed to make use of programming structures
(such as conditional branch, loop, recursion etc.). They
can be implemented by using five kinds of basic nodes
in the system software of TOPSTAR. The current system
of TOPSTAR supports most graphs in Free-Choice
class of Petri net.

In implementation, data buffers should be controlled
not to overflow. This problem is solved by introducing
‘inhibitors’ of Petri net. In order to extract more paral-
lelism in the pipeline effect, a flow control mechanism is
implemented, such that tokens may get anead of others in
a pipeline.

TOPSTAR-II consisting of 24 micro-processors is
constructed and working with some applications. The

12

parallelism in the case of parallel merge-sort is investi-
gated.

2. Hardware Structure

The system is composed of two kinds of modules: PM
(Processing Module) and CM (Communication, Control
Module). PM and CM correspond to ‘transition’ and
‘place’ in Petri net, and they are constructed with micro-
processors (Z-80) and peripheral LSIs such as an inter-
rupt controller and a DMA controller.

One of the design problems of data flow multi-
processors exists in the communication and connection
method between processors in terms of efficiency and
adaptability to applications. It is desirable for the hard-
ware structure to be similar to software structure. In
our system, each PM is connected to many CMs, so that
hardware has a dynamic structure and adjust itself to the
structure of software by selecting one of the connective
lines dynamically. Overview of system hardware is shown
in Fig. 2-1.

2.1 DMA Connection

DMA connection is used to communicate between
PM and CM at high speed. It is used because data trans-

C-MODULES

Fig. 2-1 A system overview.

P-module

T. Suzuki, K. KuriHARA, H. TANAKA and T. MOTO-OKA

fer rate is a dominant factor in data flow processing, and
block data transfer of procedure level processing is
suitable for DMA. Signal lines of a couple of DMA
controllers (Intel 8257) are connected directly as shown
in Fig. 2-2. Data are transferred from memory to
memory in distributed control. Common clock is used
so that synchronization may be needed only at the
beginning of a block transfer.

2.2 Dynamic Structure

As in Fig. 2-1, every PM is connected to several CM’s,
and every CM to several PM’s, in connection such as
bipartite graph of two kinds of modules. Each PM is

Comm,

Memory

L o—Tom, "=
2t DMAC [

3j0ACK, ¢ 2 3
D

Local

Memory

Fig. 2-2 DMA connection.

C-module

DMAC: DMA Controller

Trans: Transceiver

=] B
=] B
; cru
comm.
— PIC mem.
} .
-+ CPU
==

SACK DMAC

PIC: Programmable Interrupt Controller
SACK: Session ACKnowledge register

comm.mem.: Communication Memory

Fig. 2-3 Inter-modules connection.

Procedure Level Data Flow Processing on Dynamic Structure Multimicroprocessors 13

dynamically employed by one of the connected CM’s,
and each CM can employ as many PM’s as necessary.
Access racing problems are solved by using interrupt
controllers (PIC: Intel 8259) and SACK (Session
ACKnowledge) register. One line is selected by rotational
priority and is connected according to the value of SACK
register. Control rights belong to each CM, and dis-
tributed control system is realized. The connection
diagram is shown in Fig. 2-3.

2.3 TOPSTAR

A prototype system “TOPSTAR-I"’ composed of three
PMs and two CMs followed by a practical system
“TOPSTAR-II” composed of 16PM’s and 8CM’s
(each CM is connected to 8PM’s) were completed and
are working with system software on practical applica-
tions (mentioned later). The system is designed so that
it can be easily expanded by plugging in new modules.
The performance is being analyzed using a simulator
written in GPSS.

<Petri nets> <data flow graph>

(direct node)

(selection node)

(merge node)

(fork node)

(join node)

Fig. 3-1 Five basic nodes.

3. System Software

The control of data flow processing is quite simple,
which can only monitor whether each process has taken
all necessary data. But in implementing it on a real
machine, various constraints occur because of limited
resources, for example load balancing due to a finite
number of processors, and overflow or deadlock prob-
lem of memory buffer used to maintain unenabled data.

3.1 Five Basic Nodes

The flow of tokens in a data flow graph can be
represented as a Petri net. A node of a data flow graph
in TOPSTAR is a procedure. Therefore it is important
to control the flow of data, but not to prepare basic
instructions.

In TOPSTAR system, five basic nodes are prepared
from the view point of the flow control. Using these
five nodes, most data flow graphs, which corresponds to
Free-Choice Petri net class, are constructed. Figure 3-1
shows the five basic nodes and corresponding Petri nets.

3.2 Free Competition Control

Using the overlapped connection, we can change
connective relations dynamically. In order to do that,
each PM may search for an enabled process queued in
CM’s. Then many PM’s gather around a busy CM
(where many enabled processes exist) automatically,
and the optimal structure is constructed.

A PM can request one enabled process by sending a
DEQ command to a CM. If the CM has an enabled

Procedures

Input Input Input Input

INPUT

SORT

MERGE

MERGE

OuTPUT

v
Output

Fig. 3-2 Petri net of parallel merge-sort program.

14

Procedure1
C-Module INPUT

/\

R I £ I =

Blieg ‘ Q
Y\Q ,Q Q Q/ /

roc-dunh
MERCE
l

g

Procedure#5]
ou'rPu'r .

Qutput

P-Module

\/ symbolizes a procedure code.
7T symbolizes the partial connection of PMs.
Link with a inhibitor is explained later.

Fig. 3-3 Snapshot on TOPSTAR.

processes it then transfers procedure (if necessary), data
and destination ‘place’ name to the PM by DMA. If
not, PM may request it by another CM.

When a PM has finished its process, the PM sends
output data, using an ENQ command, to the CM which
contains the destination ‘place’. While each CM is
supervising all ‘places’ contained internally.

A parallel merge-sort program, developed as a test
program on TOPSTAR-I, is shown to illustrate the be-
haviour of the system. Petri net corresponding to the
program is shown in Fig. 3-2, and a snap shot of the
execution on TOPSTAR-I is shown in Fig. 3-3.

In Fig. 3-3, a ‘bar’ in Petri net becomes a ‘box’ where
an adequate PM goes in and executes the process. And
a ‘place’ means a buffer in CM. In this snapshot, one
sort node and one merge node are active. Tokens in
‘places’ are unenabled data. And one PM is idle.

3.3 Flow Control

In implementing, buffers (which keep unenabled data
in CM) should be prevented from overflowing. It means
adding a new condition to the enable rule “‘at least one
buffer of the next nodes should be empty”. This cor-
responds to introducing inhibitors in Petri net. The
inhibitor is implemented as a V-OP command (see
Fig. 3-4). The number of empty buffers of the next nodes
are controlled by semaphores.

To execute data flow programs efficiently, constraints

T. Suzuki, K. KURIHARA, H. TANAKA and T. MOTO-OKA

Fig. 3-4 ‘Inhibitor’ is implemented as a V-OP command.

other than data dependency should be excluded. On the
other hand, loop and recursion are desired in program
structures. These requirements are implemented, thus
racing and deadlock problems are solved.

{Outrunning problem)

In the usual pipeline processing, data cannot enter a
processing element until the previous data has gotten
out of it (FIFO control). This is a constraint other than
data dependency. In order to gain more parallelism, we
used multiple token places and allowed flowing data to
get ahead of others.

To identify each data, a serial number (it is equivalent
to ‘coloured token’ [7], [8]) is attached to them at the
input ode. But with finite token places, there may be a
deadlock at a join node in outrunning circumstances
(see Fig. 3-5). It can be avoided by reserving one place
for the data that have the earliest serial number. These

Fig. 3-5 An example of a dead lock at a join node.

Procedure Level Data Flow Processing on Dynamic Structure Multimicroprocessors 15

controls are performed by sending V-OP commands

from PMs’ to CMs’. [N l Se I‘“ l 2 r ""’"J data body]
{Program structure) SP: Depth of the stack

Loop and recursion are allowed as program structures. di: Node mame the data passed.
They can be constructed by combining a selection node Fig. 3-8 The data format.
and a merge node.

Loop

Figure 3-6 is an example of a conditional branch and a
loop. An input can enable the node and one output is
selected. The selection is decided inside the node by the
selective procedure itself. In these cases, the flow should
be controlled at the outside of the body (see Fig. 3-7).

Recursion

Stack memory is usually used in each node for re-
cursive control. However, in TOPSTAR, in order to
make each node nonhistorical, each data keeps its own
stack to record the history (the list of node names it
passed). The data format is shown in Fig. 3-8.

A recursive graph is converted to the graph as follows
using PUSH and POP nodes:

1. Make PUSH and POP nodes at the entrance and
exit of the graph.

2. Connect the recursive call links to the PUSH node.
3. Connect the recursive return links to the output
links of the POP node.

When data enter the PUSH node, it pushes down the
return node name into the header of the data. When data
enter the POP node, it pops out the node name and

x-1.1)

@1: a recursive node.

A(x,y) = if x=0 then y+1
else if y=0 then A(x-1,1)

else A(x-1,A(x,y-1))

a, B¢ return node name

Fig. 3-9(a) Recursive definition of Fig. 3-9(b) The result of
Ackermann function the conversion.

selects one of the output links according to the name.
Ackerman function is defined recursively as in Fig. 3-(a).
The graph of Fig. 3-9(a) is converted to the graph of
Fig. 3-9(b), which can be executed on TOPSTAR.

(conditional branch) (loop)

Fig. 3-6 Examples of program structures. ::z’;::ation

Sort

Mergel

Merge2

Qutput

(conditional branch) (100p)

Fig. 3-7 Flow control of program structure. Fig. 4-1 Parallel merge-sort program.

16

4. Applications and Estimations

TOPSTAR system was originally developed for par-
allel processing of pattern recognition or artificial
intelligence. Application for the recognition of printed
Chinese characters was examined. Detail was shown in

Table 4-1 Mean execution time of each procedure.
Procedure Input
name generation Sort Mergel Merge2 Output
Exec.
time (sec) 1.912 0.816 0.083 0.171 0.0017
Table 4-2 System overhead for each command.
Command DEQ ENQ V-OP
Time (msec) 23 1.3 0.8
Speed up
.
a logical limit (# of buffers=3)
£ 4
'y
3 logical limit (# of buffers=2)
£
©

logical limit (# of buffers=1)

0 —&——9

© # of buffers =1
A F ol buffers =2

B # of buffers =3

of PMs

/ 2 N « £ ¢ ? 4

Speed up=S=Serial execution time/Parallel execution time

Logical limit=# of buffers * Serial execution time/Critical node
execution time

Fig. 4-2 Speed up of the pipeline in the case of parallel merge-sort.

T. Suzuki, K. KURIHARA, H. TANAKA and T. MOTO-0KA

another paper [9].

Several application programs are working. We present
the result about parallel merge-sort program (Fig. 4-1).
Mean execution times of these nodes are shown in Table
4-1. Serial execution time becomes 5.515 sec. Figure 4-2
shows the processing speed up by increasing the number
of PMs’. It also estimates the pipeline effect of plural
data buffers. Logical limit is decided by the critical node
(which has the maximum execution time) of the data
flow graph. System overhead (i.e. command exchanging
time) in this case is shown in Table 4-2.

5. Conclusion

Dynamic structure data flow machine TOPSTAR con-
sisting of multi-microprocessors was designed and
constructed. It is composed of two kinds of modules
(CM and PM) which play the roles of ‘place’ and ‘tran-
sition’ in Petri net. Separation of each processing to
‘place’ and ‘transition’, and the overlapped connection
between modules made this system highly flexible.

Procedure level data flow processing system was
implemented on TOPSTAR. Data driven mechanism is
realized by exchanging three commands (DEQ, ENQ
and V-OP) between CMs’ and PMs’. With the flow
control program, data can get ahead of others in pipelin-
ing to attain higher parallelism. Loop and recursion are
used as program structures. Some applications are
successfully implemented, and the actually measured
result about parallel merge-sort program is reported.

References
1. RUMBAUGH, J. E. A Data Flow Multiprocessor, IEEE Trans. on
Computers, C-26, 2 (Feb. 1977), 138-146.
2. Davis, A. L. The Architecture and System Method of DDM1:
A Recursively Structured Data Driven Machine, Proc. of the 5th
Annual Symposium on Computer Architecture, Computer Archi-
tecture News, 6, 7, Apr. (1978), 210-215.
3. KELLER, R. M. et al. A Loosely-Coupled Applicative Multi-
Processing System, AFIPS, Proc. of the NCC, 1979, 861-870.
4. ArviND and K. P. GosteLow. A Computer Capable of Ex-
changing Processors for Time, Information Processing 77, North
Holland (1977), 849-853.
5. DENNING, P. J. Operating Systems Principles for Data Flow
Networks, Computer, 11, 8 (July 1978), 86-96.
6. PETERSON, J. L. Petri Net, ACM Computing Survey, 9, 3,
223-252.
7. Dennis, J. B. First Version of A Data Flow Procedure Lan-
guage, MIT/LCS/TM-61 (May 1975).
8. DennIs, J. B. and D. P. MisNus. A Preliminary Architecture for
A Basic Data Flow Processor, Proc. of the 2nd Annual IEEE Sym-
posium on Computer Architecture (Jan. 1975), 126-132.
9. Suzuki, T. and T. MoTo-0KkA. Pipeline SAMD Machine and
Its Applications to Recognition of Printed Chinese Characters,
Proc. of the 4th Int. Joint Conf. on Pattern Recognition (1978),
1082-1086.

(Received October 3, 1980: revised August 12, 1981)

