Zeros of Polynomial and an Estimation of its Accuracy

MASAO IGARASHI*

YAMASHITA, S. and SATAKE, S. show that the upper bound of the calculation errors of f(x)=Y 1.0 awx*is J -0
|ax*|p~L, where L is the number of the digits in the mantissa based on P radix. We also show that near the zero
of f(x), itis ;7o |ax*|P~L/2. Furthermore by using Newton-Raphson’s iteration method, we propose a method
to estimate the accurate significant digits of the numerical result and give some numerical examples.

1. Introduction

We consider a convergence criterion of real zeros of the
polynomial f(x) with real exact coefficients a;

)= kZ:]o ax*  (a,80#0), m

by using a Newton-Raphson’s iteration methods

Xiv 1 =x;—f(x)[f (x)). ()]
Beginning with a suitable starting value x,, successive
approximations x; (i=1,2,3,---) converge to a zero
of f(x). It is well known that the iteration can be broken
off when —f(x,)/f'(x;) takes the value less than its cal-
culation errors. And if successive approximation x;
comes close to a zero of f(x), then the accurate significant
digits of f(x) are less than that of f’(x). Hence the
accurate significant digits of —f{(x;)/f'(x;) are nearly
equal to that of f(x,).

Now suppose that we use the floating-point arithmetic
with L digits in the mantissa based on P radix such as
P is 2 for binary and we calculate f(x) according to
Horner’s scheme as follows:

b,=a,
bo=a,+xb,,, (k=n—1,n-2,n-3,-.-,1),
bo=f(x).

From the above assumptions, YAMASHITA, S. and

SATAKE, S. [1] show that the upper bound of the cal-
culation errors Af(x) of f(x) is

A7 3, la1P ©)

They used this estimation as a convergence criterion of
(2), and obtained good results. However this estimation
is an over-estimation when x; comes close to a zero of
J(x), because the accurate significant digits of f(x;) and
of Af(x;) decrease if x; comes close to a zero of f(x).

Considering the above mentioned fact, we show that
the upper bound of Af(x) near a zero of (1) is estimated
as follows:
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Af()I < j;o lag | PE2.

Furthermore, using this estimation and changing the
calculation process of (2) we attempt to estimate the
accurate significant digits of the numerical solution of (1).

2. Calculation Errors of f(x)

Let X be an approximate value for a quantity whose
exact value is x, and put Ax=%— x. Then for two values
X¥=Ax+x and j=Ay+y, we have A(x+y)=Ax+Ay.
Note that if Ax and Ay are nonnegative or nonpositive
then the following relation is derived.

|A(x—y)| =|Ax— Ay| S max (|Ax], |Ay]) @

We define f|x|= Y7_, |a,x*|. Then for any given x,
(f1x]+£(x))/2 is sum of all nonnegative terms of a,x* (k=
0, 1, 2,- - -n) while —(f|x| —f(x))/2 is that of the negative
terms of @, x* (k=0, 1, 2,- - -n). If we put

Fr@=(fIxI+f)/2, f~x)=(fIxI-f(x)/2,

then we have f(x)=f"(x)—f (x). We use Horner’s
scheme to calculate f*(x) and f ~(x), and denote the cal-
culation errors of £ *(x) and f ~(x) by Af *(x) and Af ~(x),
respectively. From (3), the upper bound of their calcula-
tion errors is as follows:

A ) S(flxl +1 ()P 72,

Af NS IxI =P 2.
If we use the chopped arithmetic (cf. [2]) to obtain the
value of £ *(x) and f ~(x), then Af *(x)=0and Af ~(x)=0.
Hence from (4), we obtain the following result.

IAf* ()= Af ™ (x)]
max ((fIx| +fC)P =2, (flx|=fG)P ~E2)) (5)

If x comes close to a zero of f(x) then the value | f(x)|
is negligible for the value of f|x|. Therefore the estimation
(5) is nearly equivalent to

[Af* ()= Af ") < fIxIP 42,

When we calculate f*(x) and f ~(x) by using floating-
point arithmetic, the phenomenon of the disappearance
of the leading digits called cancellation (cf. [3]) does not
occur. Hence, near the zero of f(x), the numerical result
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f¥(x)—f"(x) contains less effective information about
f(x) than the numerical result f(x). It means that
IAfG)I S IAf T ()= Af~ ().
Concluding the above discussion, we have

THEOREM. If we use the chopped floating-
point arithmetic with L digits in the mantissa based on
P radix, and carry out Horner’s scheme for the value
of f(x), and furthermore if x is near a zero of f(x), then
the calculation errors Af(x) are estimated as follows:

AfIS 3 latip 2 ©

3. Estimation of the Accurate Significant Digits

We consider the following two calculation processes
to estimate the accurate significant digits of the numerical
solution of (1) by using Newton-Raphson’s iteration
methods.

Case 1.  First, we calculate f(x;) and f'(x)),
next f(x;)(f"(x;) and finally x,—f(x){f"(x)).
Case II. We put

g(x)=xf"(x)—f(x)
=(n—1Dax"+(n—2)a,_ X" '+ - +ax*—a,.

First, we calculate g(x;) and f'(x;) and then g(x;)/
f'(x;). Hereafter we put £, ; =g(x,))/f'(x).
If x; comes close to a zero of f(x), then the leading digits
of f(x,) disappear in the floating-point arithmetic. This
tendency becomes more pronounced in the case where
x; comes toward multiple zeros of f(x) or toward a nest
of zeros of f(x). In any case the following relation comes
near the zero of f(x)
Ixf ") > 1f(x)I- )
This relation means that the numerical result g(x;) (case
II) contains less effective information about f(x;) than
the numerical result f(x,) (case I). This is due to the fact
that in case I, f(x;) is calculated by using full significant
digits, whereas in case II, f(x;) is calculated by losing a
few significant digits (see Fig. 1). On the other hand,
their exponents may agree with each other. Hence it is
reasonable to show that near the zero of f(x), the lower
digits of the mantissa of x;,, do not agree with one or
more of those of £, , with respect to the same exponent.
It is well known that if f(x,) has a small degree of ac-
curacy then the succeeding numerical result x;,, will
be more accurate than that of x;. Here we assume that
if (6) is satisfied, then f(x;) has no accuracy. That is, if
(6) is solved, then the succeeding x;,, and £;, are less
accurate than the preceding ones respectively, and the
accurate significant digits in their calculation nearly
agree with the accurate significant digits of the numerical
solution.
Considering the above mentioned facts we are able to
conclude the following:
PrOPOSITION.  If  |A(x) ST 5-0 (@xX)P 52
is satisfied, then the leading agreement digits of x; and
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Case (I)

l L significant digits
£

Case (II) [ L significant aigits

T T
O(g(xi}) Olf(xi)}

lost digits

Fig. 1 A comparison between case (I) and (II) with respect to
the amount of effective information about f(x,).

R; are nearly equal to the accurate significant digits of
the numerical solution.

4. Numerical Examples and Remarks

We conducted some numerical experiments to
illustrate whether the above conclusion is suitable or not.
The numerical examples are listed in Table 1, their results
are shown in Table 2, and some of them in detail
in Table 3.

As far as the above numerical examples are concerned
our conclusion is appropriate for the purpose of
estimating the accuracy of numerical solutions. The
following well known facts are obtained accurately.

1) If x; is an approximated solution of M-ple zeros of
(1), then its accurate significant digits are about L/ M.

2) If x; comes towards a nest of zeros of f(x), then a few
accurate significant digits of x; are lost depending on its
density.

Remarks I. When we actually use the convergence
criterion (5), we must consider that for some number
system machines, except binary machines, a few leading
bits are sometimes lost in calculation. For example, in
the hexadecimal number system machine, the maximum
number of bits lost is 3. In this case, (5) is suitable for
2722 (single precision) and 27 3* (double precision).

Table 1 The Lists of Numerical Examples.

1. (x—1.2340)(x—1.2342)(x—1.2345)
=x3—3.7027x2 +4.5699957x —1.8801469566
(x—12.5)3=x3—37.5x%+468.75x —1953.125
(r—123)(x —0.5)(x — 1)(x + 1) =x* — 123.5x* +60.5x>
+123.5x—-61.5
(x+1.25)*=x*+5x3+9.375x> +7.8125x +2.44140625
(3x+2)°=243x5+810x*+1080x> +720x2 +240x + 32
Ce— 1 (x—2)(x—3)(x—4)(x — 5)x —6)
=x%—21x%+175x* —735x° +1624x* — 1764x + 720
7. (x—1.20)(x—1.21)(x—1.22)(x —1.23)(x — 1.24)(x —1.25)
(x—1.26)
=x7 —8.61x%431.7695x° —65.121735x* +80.08914424x3
—59.0953690404.x2 +24.22376210088x —4.2553354536
8. (x—1.25)°
=x1°—12.5x%+70.3125x® —234.375x" + 512.6953125x°
—769.04296875x5 +801.08642578125x* —572.20458984375x3
+-268.220901489258x% —74.5058059692383x
4-9.31322574615479
9. (x—0.5(1-cos 7/25))(x —0.5(1 —cos 37/25))- - -(x—0.5
(1 —cos 237/25))
=x12_78x'! 41001x'°—5005x° +12870x® — 19448x7
+18564x% —11628x3 +4845x* —1330x> +231x2 —23x+1
10. 2!?(x—cos n/40)(x —cos 31/40)(x —cos 57/40)- - -(x—cos
397/40)
=524288x2° —2621440x'® + 5570560x' 6 — 6553600x*
+4659200x*2 —2050048x ' ° 4 549120x® — 84480x° + 6600x* —
—200x2+1
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II. In addition to case I and case II, we perform
the following calculation process.

First, we calculate f*(x;) and f ~(x;), next

(f*(x)—=f~(x))If (x,) and finally x,—(f* (x;) -

PANCN)IMENE

Table 2 The Results of the Numerical Solutions.

M. IGARASHI

Hereafter we put %, , =x,+(f*(x)—f " (x)/f'(x).

By using this calculation process, we have almost the
same results (see Table 3). However this process is more

complicated than that of case II.

No. *o Solutions F{6)) flx|*2-%4
1 1.0 x= 0.123400000007801 401 0.0 0.83—15
= 0.123400000169573 401 0.22-15
1.2348 x= 0.123450000072771 401 0.22—15 0.83—15
= 0.123450000095943 4-01 0.22-15
1.2341 = 0.123450000002748-+01 —0.22—15 0.83-15
£= 0.123449999981272+01 —0.22-15
2 10.0 x= 0.124998940056445 +02 —0.62—12 0.86—12
£= 0.124998861863364 402 —0.79—12
5.0 x= 0.124998955753597 402 —0.11—12 0.86—12
£=  0.124998890578041 402 —0.56—12
3 3.0 x= 0.100000000000000-+01 0.0 0.20—13
= 0.100000000000000-+01 0.0
154,123 = 0.123000000000000-+03 0.0 0.25—07
= 0.123000000000000+03 0.19—07
4 -1.0 = —0.124981474919127+01 0.15—14 0.26—14
= —0.124981961064475 4-01 0.11—14
—20 = —0.125017169627768+01 0.88—15 0.21-14
£=—0.125016208626706+01 0.88—15
5 3.0 x=—0.665908236665141 400 0.46—13 0.56—13
= —0.6658697826458174-00 0.60—13
5.0 = —0.666078205970774+00 0.21-13 0.56—13
£=—0.666008959044368 00 0.42—13
6 Ls x=0.200000000000000+01 0.39—12 0.11-10
= 0.199999999999997+01 0.79—12
7 0.1205 x=0.120974224662827+01 021-13 0.28—-13
= 0.120906036897733 4-01 0.10—12
1.265 = 0.126002058270954+01 —0.88—15 0.32-13
%= 0.126008417791960+-01 0.52—12
8 1.0 x= 0.120069396067796-01 —~0.21—13 0.43—12
£= 0.119384829264054 401 0.52—12
2.0 x= 0.130933103463042-01 0.52—12 0.66—12
£= 0.131317985013408+-01 09712
9 2.0 x= 0.137902118690489 1-01 —0.68—11 0.37—10
£= 0.137902118690500+01 —0.24—11
0.38 x=0.381966011240331 +00 0.37—14 0.22—13
£= 0.381966011180631--00 0.45—13
7.88 x= 0.7120122174523144-01 0.50—05 0.48—04
£= 0.712012217452315401 —0.20—04
10 0972 x= 0.9723699204003314-00 —0.13—-09 0.84—09
£= 0.972369920372271+00 0.21-08
0.38 = 0.382683432365089 100 0.13—13 0.49-13
= 0.382683432365098+00 0.26—13
—0.64 = —0.649448048330018 00 0.28—11 0.56—11
£=—0,649448048328451 1-00 0.44—11

1t x, is initial value

(HITAC L340, DOUBLE P.)
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Table 3 The Detailed Results of the Numerical Examples.
No. 7, f(x)=(x—1.20)(x —1.21)" - -(x —1.26)

Initial value xo=1.205
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Iteration times Solutions f(x) xf'(x) flxi*2-57 Max

1 x=0.121065297107832 +-01 —0.90—13 —0.12—-09 0.35—14 0.19-14
£=0.121043309353861 4-01 —0.57—13 —0.12—-09
%=0.121075258290349 +01 —0.90—-13 —0.11-09

2 x=0,120974224662827 +01 0.21—-13 0.15—09 0.35—14 0.19—14
£=0.120906036897733 +01 0.10—12 —0.17—-09
%=0.120951010118022 01 0.61—13 —0.16—09

3 x=0.120990722558912+01 0.44—14 —0.14-09 0.35—14 0.19—14
£=0.120966220991922+01 0.38—13 —0.15—09
*¥=0.1210186821512224-01 —0.28—-13 —0.13—-09

4 x=0.120994337175699+01 —0.53—-14 —0.14—09 0.35—-14 0.19—14
2=0.120973994639523 +-01 0.14-13 0.15—09
X=0.120990722558912 401 0.44—14 0.15—09

5 x=0.120989961326739+01 —0.88-15 —0.14—09 0.35—14 0.19—14
£=0.120944636394300 +01 0.67—13 0.16—09
%=0.120994337175699 + 01 —-0.53—-14 —0.14—09

No. 8, f(x)=(x—1.25)!°
Initial value xo=1.0

1 x=0.102500000000000+01 0.33—-06 —0.15—04 0.25—-13 0.12—13
£=0.102500000000000+01 0.33—-06 —0.15—04
X=0.102500000000000+01 0.33—06 —0.15—-04

13 x=0.118684684380199+ 01 0.11-11 —0.15—-09 0.51—-13 0.25-13
£=0,118598560482934 1-01 0.11—-11 —0.21-09
*=0,118742523040777+01 0.87—12 —~0.17—-09

14 x=0,119323240884895 4-01 0.45-—-12 —0.61-10 0.52~-13 0.25—-13
£=0.119017119191207 + 01 0.61—12 —0.11-09
*==0.119500794799051 +01 0.32—12 —0.55—10

15 x=0.120069396067796 401 —0.21-13 -0.17—10 0.54—13 0.26—13
%£=0.119384829264054 401 0.52—12 —0.65—10
%=0.119972008516025 +01 0.14—12 —-0.25—10

Here, Max =Max ((a,x*|*2~%¢)

(HITAC L340, DOUBLE P.)
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